Immunogenetics

, Volume 70, Issue 5, pp 337–346 | Cite as

Identification and expression analysis of a TLR11 family gene in the sea urchin Strongylocentrotus intermedius

  • Yinan Wang
  • Shixiong Cheng
  • Yaqing Chang
  • Kaiquan Li
  • Yang Chen
  • Yi Wang
Short Communication

Abstract

In this study, a homolog of the TLR11 family gene from the sea urchin Strongylocentrotus intermedius (denoted as SiTLR11) was cloned and characterized. The full-length cDNA of SiTLR11 was 2096-bp long, which included 43 bp of 5′ untranslated region (UTR), 238 bp of 3′ UTR, and a putative open reading frame of 1815 bp encoding a polypeptide of 604 amino acid residues. Representative domains such as leucine-rich repeat (LRR) (residues 108–249) and a cytoplasmic Toll-interleukin-1 receptor (TIR) (residues 429–571) domains were detected in the predicted amino acid sequence of SiTLR11. SiTLR11 transcript was widely distributed in all the tested tissues, including intestine, tube feet, gonad, coelomocytes, and peristomial membrane, with the highest expression level in the coelomocytes and peristomial membrane. After the sea urchin was injected with polyinosinic:polycytidylic acid (PolyI:C), the expression level of SiTLR11 in the coelomocytes increased significantly, reaching 1.96-fold the level of the control at 12 h, but decreased to level below that of control at 24 and 48 h. Injection of peptidoglycan (PGN) also led to increased expression of SiTLR11, which peaked at 12 h, yielding an increase of 2.19-fold compared to the control group, and continued to increase at 24 and 48 h. However, almost no differences in immunological activity were found in the groups challenged with lipopolysaccharides (LPS), Zymosan A (ZOA), or Vibrio fortis compared to the control. Taken together, the results strongly suggested that SiTLR11 was functionally involved in the immune response triggered by double-stranded RNA (dsRNA) viruses and Gram-positive bacteria.

Keywords

Strongylocentrotus intermedius Toll-like receptor 11 family gene Spatial expression Temporal expression 

Notes

Acknowledgments

The authors thank the reviewers who provided helpful comments. This work was supported by grants from Natural Science Foundation of China (31402275), Liaoning Department of Science and Technology (2015203003), and Liaoning Excellent Young Scholar in University (LJQ2015016).

Reference

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  2. Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto M et al (2003) Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55:570–581CrossRefPubMedGoogle Scholar
  3. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859CrossRefPubMedGoogle Scholar
  4. Blasius A, Beutler B (2010) Intracellular toll-like receptors. Immunity 32:305–315CrossRefPubMedGoogle Scholar
  5. Buckley KM, Rast JP (2012) Dynamic evolution of toll-like receptor multigene families in echinoderms. Front Immunol 3:136CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chang Y, Ding J, Song J, Yang W (2004) Biology and aquaculture of sea cucumbers and sea urchins. Oceanpress, Beijing (In Chinese)Google Scholar
  7. Girardin SE, Sansonetti PJ, Philpott DJ (2002) Intracellular vs extracellular recognition of pathogens—common concepts in mammals and flies. Trends Microbiol 10:193–199CrossRefPubMedGoogle Scholar
  8. Gross PS, Al-Sharif WZ, Clow LA, Smith LC (1999) Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol 23:429–442CrossRefPubMedGoogle Scholar
  9. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529CrossRefPubMedGoogle Scholar
  10. Hu GB, Zhang SF, Yang X, Liu DH, Liu QM, Zhang SC (2015) Cloning and expression analysis of a Toll-like receptor 22 (tlr22) gene from turbot, Scophthalmus maximus. Fish Shellfish immunol 44(2):399–409CrossRefPubMedGoogle Scholar
  11. Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T et al (2008) Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 18:1112–1126CrossRefPubMedPubMedCentralGoogle Scholar
  12. Iwanaga S, Lee B-L (2005) Recent advances in the innate immunity of invertebrate animals. BMB Rep 38:128–150CrossRefGoogle Scholar
  13. Kadowaki N, Ho S, Antonenko S, de Waal Malefyt R, Kastelein R, Bazan F, Liu Y (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–870CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983CrossRefPubMedGoogle Scholar
  15. Li XD, Chen ZJ (2012) Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. elife 1:e00102CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li C, Haug T, Styrvold OB, Jørgensen TØ, Stensvåg K (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin. Dev Comp Immunol 32:1430–1440CrossRefPubMedGoogle Scholar
  17. Li YW, Luo XC, Dan XM, Qiao W, Huang XZ, Li AX (2012) Molecular cloning of orange-spotted grouper (Epinephelus coioides) TLR21 and expression analysis post Cryptocaryon irritans infection. Fish Shellfish Immunol 32:476–481CrossRefPubMedGoogle Scholar
  18. Li C, Zhao M, Zhang C, Zhang W, Zhao X, Duan X et al (2016) MiR210 modulates respiratory burst in Apostichopus japonicus coelomocytes via targeting Toll-like receptor. Dev Comp Immunol 65:377–381CrossRefPubMedGoogle Scholar
  19. Li H, Yang G, Ma F, Li T, Yang H, Rombout JH, An L (2017) Molecular characterization of a fish-specific toll-like receptor 22 (TLR22) gene from common carp (Cyprinus carpio L.): evolutionary relationship and induced expression upon immune stimulants. Fish Shellfish Immunol 63:74–86CrossRefPubMedGoogle Scholar
  20. Lu Y, Li C, Wang D, Su X, Jin C, Li Y et al (2013a) Characterization of two negative regulators of the Toll-like receptor pathway in Apostichopus japonicus: inhibitor of NF-kB and Toll-interacting protein. Fish Shellfish Immunol 35:1663–1669CrossRefPubMedGoogle Scholar
  21. Lu Y, Li C, Zhang P, Shao Y, Su X, Li Y et al (2013b) Two adaptor molecules of MyD88 and TRAF6 in Apostichopus japonicus Toll signaling cascade: molecular cloning and expression analysis. Dev Comp Immunol 41:498–504CrossRefPubMedGoogle Scholar
  22. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826CrossRefPubMedGoogle Scholar
  23. Medzhitov R, Janeway Jr CA (2000) How does the immune system distinguish self from nonself? Seminars in Immunology 12. Academic Press, Cambrige, pp 185–188Google Scholar
  24. O’Neill LAJ, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364CrossRefPubMedGoogle Scholar
  25. Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35:1263–1272CrossRefPubMedGoogle Scholar
  26. Palti Y, Gahr S, Purcell M, Hadidi S, Rexroad C III, Wiens G (2010) Identification, characterization and genetic mapping of TLR7, TLR8a1 and TLR8a2 genes in rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 34:219–233CrossRefPubMedGoogle Scholar
  27. Rast J, Smith L, Loza-Coll M, Hibino T, Litman G (2006) Genomic insights into the immune system of the sea urchin. Science 314:952–956CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ren Y, Pan H, Pan B, Bu W (2016) Identification and functional characterization of three TLR signaling pathway genes in Cyclina sinensis. Fish Shellfish Immunol 50:150–159CrossRefPubMedGoogle Scholar
  29. Roach J, Glusman G, Rowen L, Kaur A, Purcell M, Smith K et al (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582CrossRefPubMedPubMedCentralGoogle Scholar
  30. Satake H, Sekiguchi T (2012) Toll-like receptors of deuterostome invertebrates. Front Immuno 3:34Google Scholar
  31. Shi Z, Cai Z, Yu J, Zhang T, Zhao S, Smeds E et al (2012) Toll-like receptor 11 (TLR11) prevents Salmonella penetration into the murine Peyer patches. J Biol Chem 287:43417–43423CrossRefPubMedPubMedCentralGoogle Scholar
  32. Smith LC, Chang L, Britten RJ, Davidson EH (1996) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 156:593–602PubMedGoogle Scholar
  33. Sun H, Zhou Z, Dong Y, Yang A, Jiang B, Gao S et al (2013) Identification and expression analysis of two Toll-like receptor genes from sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol 34:147–158CrossRefPubMedGoogle Scholar
  34. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa M, Engele M, Sieling P et al (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544–1547CrossRefPubMedGoogle Scholar
  35. Wang YN, Feng NS, Li Q, Ding J, Zhan YY, Chang YQ (2013) Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult Res 44:691–700CrossRefGoogle Scholar
  36. Wang Y, Bi X, Chu Q, Xu T (2016a) Discovery of toll-like receptor 13 exists in the teleost fish: miiuy croaker (Perciformes, Sciaenidae). Dev Comp Immunol 61:25–33CrossRefPubMedGoogle Scholar
  37. Wang Y, Ding J, Liu Y, Liu X, Chang Y (2016b) Isolation of immune-relating 185/333-1 gene from sea urchin (Strongylocentrotus intermedius) and its expression analysis. J Ocean Univ China 15:163–170CrossRefGoogle Scholar
  38. Wang RH, Li W, Fan YD, Liu QL, Zeng LB, Xiao TY (2017) Tlr22 structure and expression characteristic of barbel chub, Squaliobarbus curriculus provides insights into antiviral immunity against infection with grass carp reovirus. Fish Shellfish Immunol 66:120–128CrossRefPubMedGoogle Scholar
  39. Yang L, Li C, Chang Y, Gao Y, Wang Y, Wei J et al (2015) Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 45:927–932CrossRefPubMedGoogle Scholar
  40. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS et al (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629CrossRefPubMedGoogle Scholar
  41. Zhang L, Zhao C, Shi D, Hu W, Wei J, Chang Y (2017) Gulfweed Sargassum horneri is an alternative diet for aquaculture of juvenile sea urchins Strongylocentrotus intermedius in summer. Aquacult Int 25:905–914CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yinan Wang
    • 1
    • 2
  • Shixiong Cheng
    • 1
  • Yaqing Chang
    • 1
  • Kaiquan Li
    • 1
  • Yang Chen
    • 1
  • Yi Wang
    • 1
  1. 1.Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of AgricultureDalian Ocean UniversityDalianPeople’s Republic of China
  2. 2.Yancheng Institute of TechnologyYanchengChina

Personalised recommendations