Skip to main content

Advertisement

Log in

PD-1 and cancer: molecular mechanisms and polymorphisms

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The programmed cell death protein 1 (PD-1) is expressed by activated T cells that act as an immunoregulatory molecule, and are responsible for the negative regulation of T cell activation and peripheral tolerance. The PD-1 gene also encodes an inhibitory cell surface receptor involved in the regulation of T cell functions during immune responses/tolerance. Beyond potent inhibitory effects on T cells, PD-1 also has a role in regulating B cell and monocyte responses. An overexpression of PD-1 has been reported to contribute to immune system avoidance in different cancers. In particular, PD-1 over-expression influences tumor-specific T cell immunity in a cancer microenvironment. Blocking the PD-1/PD-1 ligand (PD-L1) pathway could potentially augment endogenous antitumor responses. Along these lines, the use of PD-1/PD-L1 inhibitors has been applied in clinical trials against diverse forms of cancer. It was believed that antibodies targeting PD-1/PD-L1 might synergize with other treatments that enhance endogenous antitumor immunity by blocking inhibitory receptor-ligand interactions. However, in all cases, the host genetic status (as well as that of the tumor) is likely to have an impact on the expected outcomes. Various investigations have evaluated the association between PD-1 polymorphisms and the risk of various types of cancer. Frequently studied PD-1 polymorphisms, PD-1.1 (rs36084323), PD-1.3 (rs11568821), PD-1.5 (rs2227981), PD-1.9 (rs2227982), and PD-1 rs7421861, and their associations in the risk of susceptibility to different types of cancer are mentioned in this review, as are studies highlighting the significance of conducting genetic association studies in different ethnic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  CAS  PubMed  Google Scholar 

  • Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 372:311–319

    Article  PubMed  CAS  Google Scholar 

  • Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen Y-B, Kaminski MS, Holland HK, Winter JN, Mason JR (2013) Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 31:4199–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Bayram S, Akkız H, Ülger Y, Bekar A, Akgöllü E, Yıldırım S (2012) Lack of an association of programmed cell death-1 PD1. 3 polymorphism with risk of hepatocellular carcinoma susceptibility in Turkish population: a case-control study. Gene 511:308–313

    Article  CAS  PubMed  Google Scholar 

  • Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Blattman JN, Wherry EJ, Ha S-J, van der Most RG, Ahmed R (2009) Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. J Virol 83:4386–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JA, Dorfman DM, Ma F-R, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Carosella ED, Ploussard G, LeMaoult J, Desgrandchamps F (2015) A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur Urol 68:267–279

    Article  CAS  PubMed  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  CAS  PubMed  Google Scholar 

  • Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34:556–563

    Article  CAS  PubMed  Google Scholar 

  • Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954

    Article  CAS  PubMed  Google Scholar 

  • Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy—inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18:6580–6587

    Article  CAS  PubMed  Google Scholar 

  • Chen L (2004) Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347

    Article  CAS  PubMed  Google Scholar 

  • Chen YB, Mu CY, Chen C, Huang JA (2014) Association between single nucleotide polymorphism of PD-L1 gene and non-small cell lung cancer susceptibility in a Chinese population. Asia Pac J Clin Oncol 10:e1–e6

    Article  PubMed  Google Scholar 

  • Cho Y-A, Yoon H-J, Lee J-I, Hong S-P, Hong S-D (2011) Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral Oncol 47:1148–1153

    Article  CAS  PubMed  Google Scholar 

  • Cunha LL, Marcello MA, Morari EC, Nonogaki S, Conte FF, Gerhard R, Soares FA, Vassallo J, Ward LS (2013) Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr Relat Cancer 20:103–110

    Article  CAS  PubMed  Google Scholar 

  • Dehaghani AS, Kashef MA, Ghaemenia M, Sarraf Z, Khaghanzadeh N, Fattahi MJ, Ghaderi A (2009) PDCD1, CTLA-4 and p53 gene polymorphism and susceptibility to gestational trophoblastic diseases. J Reprod Med 54:25–31

    CAS  PubMed  Google Scholar 

  • Dolan DE, Gupta S (2014) PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer control: journal of the Moffitt Cancer Center 21:231–237

    Article  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Gong M, Shi Z, Xiao J, Zhang J, Peng J (2016) Programmed cell death-1 polymorphisms decrease the cancer risk: a meta-analysis involving twelve case-control studies. PLoS One 11:e0152448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dougall WC, Kurtulus S, Smyth MJ, Anderson AC (2017) TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev 276:112–120

    Article  CAS  PubMed  Google Scholar 

  • Droeser RA, Hirt C, Viehl CT, Frey DM, Nebiker C, Huber X, Zlobec I, Eppenberger-Castori S, Tzankov A, Rosso R (2013) Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 49:2233–2242

    Article  CAS  PubMed  Google Scholar 

  • Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73:3591–3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay AP, Signoretti S, Callea M, Telό GH, McKay RR, Song J, Carvo I, Lampron ME, Kaymakcalan MD, Poli-de-Figueiredo CE (2015) Programmed death ligand-1 expression in adrenocortical carcinoma: an exploratory biomarker study. J Immunother Cancer 3:1

    Article  Google Scholar 

  • Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, Krummel MF, Bluestone JA (2009) Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nat Immunol 10:1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y, Zhou J, Li B-Z, Shi Y-H, Xiao Y-S (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15:971–979

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Zhu L, Zhou J, Li G, Li Y, Li S, Wu Z, Rong J, Yuan H, Liu Y (2015) Association between co-inhibitory molecule gene tagging single nucleotide polymorphisms and the risk of colorectal cancer in Chinese. J Cancer Res Clin Oncol 141:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Ghebeh H, Mohammed S, Al-Omair A, Qattant A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Amer SB, Tulbah A (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianchecchi E, Delfino DV, Fierabracci A (2013) Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 12:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Haghshenas MR, Naeimi S, Talei A, Ghaderi A, Erfani N (2011) Program death 1 (PD1) haplotyping in patients with breast carcinoma. Mol Biol Rep 38:4205–4210

    Article  CAS  PubMed  Google Scholar 

  • Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci 104:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS (2013a) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid O, Sosman JA, Lawrence DP, Sullivan RJ, Ibrahim N, Kluger HM, Boasberg PD, Flaherty K, Hwu P, Ballinger M (2013b) Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM). ASCO Annual Meeting Proceedings

  • Han S-U, Kim H-T, Seong DH, Kim Y-S, Park Y-S, Bang Y-J, Yang H-K, Kim S-J (2004) Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 23:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, Okazaki T, Tokura Y (2010) Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116:1757–1766

    Article  PubMed  Google Scholar 

  • Hsu M-C, Hsiao J-R, Chang K-C, Wu Y-H, Su I-J, Jin Y-T, Chang Y (2010) Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma. Mod Pathol 23:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Li D, Xiang G, Xu F, Jie G, Fu Z, Jie Z, Da P, Li D (2011) PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat 129:195–201

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Vudattu N, Sznol M, Gettinger S, Kluger H, Lupsa B, Herold KC (2015) Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care 38:e55–e57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivansson EL, Juko-Pecirep I, Gyllensten UB (2010) Interaction of immunological genes on chromosome 2q33 and IFNG in susceptibility to cervical cancer. Gynecol Oncol 116:544–548

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P, Grotenhuis JA, Hoogerbrugge PM, de Vries IJM, Adema GJ (2009) Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology 11:394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Xu Y-Y, Li F, Xu B, Zhang X-G (2014) The role of B7-H1 in gastric carcinoma: clinical significance and related mechanism. Med Oncol 31:1–7

    Google Scholar 

  • Jiao Q, Liu C, Yang Z, Ding Q, Wang M, Li M, Zhu T, Qian H, Li W, Tu N (2014) Upregulated PD-1 expression is associated with the development of systemic lupus erythematosus, but not the PD-1.1 allele of the PDCD1 gene. Int J Genom 2014

  • Jin H-T, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Negative co-receptors and ligands. Springer

  • Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, Melief CJ, van der Burg SH (2009) Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 15:6341–6347

    Article  CAS  PubMed  Google Scholar 

  • Kashani-Sabet M (2010) Tumor progression by immune evasion in melanoma. Cancer 116:1623–1625

    Article  PubMed  Google Scholar 

  • Katsuya Y, Fujita Y, Horinouchi H, Ohe Y, Watanabe S-I, Tsuta K (2015) Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma. Lung Cancer 88:154–159

    Article  PubMed  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Khalili JS, Liu S, Rodríguez-Cruz TG, Whittington M, Wardell S, Liu C, Zhang M, Cooper ZA, Frederick DT, Li Y (2012) Oncogenic BRAF (V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 18:5329–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoury SJ, Sayegh MH (2004) The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity 20:529–538

    Article  CAS  PubMed  Google Scholar 

  • Kim PS, Ahmed R (2010) Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Kawano S, Hatachi S, Kurimoto C, Okazaki T, Iwai Y, Honjo T, Tanaka Y, Minato N, Komori T (2005) Enhanced expression of programmed death-1 (PD-1)/PD-L1 in salivary glands of patients with Sjögren's syndrome. J Rheumatol 32:2156–2163

    CAS  PubMed  Google Scholar 

  • Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094–5100

    Article  CAS  PubMed  Google Scholar 

  • Kornete M, Piccirillo CA (2011) Critical co-stimulatory pathways in the stability of Foxp3+ T reg cell homeostasis in type I diabetes. Autoimmun Rev 11:104–111

    Article  CAS  PubMed  Google Scholar 

  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015:23–34

    Article  CAS  Google Scholar 

  • Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-J, Jang B-C, Lee S-W, Yang Y-I, Suh S-I, Park Y-M, Oh S, Shin J-G, Yao S, Chen L (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Lett 580:755–762

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Kawamura K, Ma G, Iwata F, Numasaki M, Suzuki N, Shimada H, Tagawa M (2010) Interferon-λ induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces anti-tumour effects in combination with anti-cancer agents. Eur J Cancer 46:180–190

    Article  CAS  PubMed  Google Scholar 

  • Li X, Jiang X, Zhang J, Jia Y (2016) Association of the programmed cell death-1 PD1. 5 C> T polymorphism with cervical cancer risk in a Chinese population. Genet Mol Res: GMR 15

  • Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ, Calin GA (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34:5003–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, Xu H, Yao S, Pons A, Chen L (2013) Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res 19:462–468

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Jiang J, Gao L, Hu X, Wang F, Shen Y, Yu G, Zhao Z, Zhang X (2014) A promoter region polymorphism in PDCD-1 gene is associated with risk of rheumatoid arthritis in the Han Chinese population of southeastern China. Int J Genom 2014

  • Loochtan AI, Nickolich MS, Hobson-Webb LD (2015) Myasthenia gravis associated with ipilimumab and nivolumab in the treatment of small cell lung cancer. Muscle Nerve 52:307–308

    Article  PubMed  Google Scholar 

  • Ma Y, Liu X, Zhu J, Li W, Guo L, Han X, Song B, Cheng S, Jie L (2015) Polymorphisms of co-inhibitory molecules (CTLA-4/PD-1/PD-L1) and the risk of non-small cell lung cancer in a Chinese population. Int J Clin Exp Med 8:16585

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudi M, Rezaiemanesh A, Salmaninejad A, Harsini S, Poursani S, Bahrami T, Tahghighi F, Ziaee V, Rezaei N (2015) PDCD1 single nucleotide genes polymorphisms confer susceptibility to juvenile-onset systemic lupus erythematosus. Autoimmunity 48:488–493

    Article  PubMed  CAS  Google Scholar 

  • Mamat U, Arkinjan M (2015) Association of programmed death-1 gene polymorphism rs2227981 with tumor: evidence from a meta analysis. Int J Clin Exp Med 8:13282

    PubMed  PubMed Central  Google Scholar 

  • Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H (2009) Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci 100:1786–1793

    Article  CAS  PubMed  Google Scholar 

  • McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2:662–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mojtahedi Z, Mohmedi M, Rahimifar S, Erfani N, Hosseini SV, Ghaderi A (2012) Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene 508:229–232

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO (2007) The cell cycle: principles of control. New Science Press

  • Mu C-Y, Huang J-A, Chen Y, Chen C, Zhang X-G (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28:682–688

    Article  CAS  PubMed  Google Scholar 

  • Mueller DL, Jenkins M, Schwartz R (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  CAS  PubMed  Google Scholar 

  • Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181:4832–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-J, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, Yao S, Tsushima F, Narazaki H, Anand S (2010) B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116:1291–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012a) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patsoukis N, Sari D, Boussiotis VA (2012b) PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A. Cell Cycle 11:4305–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A (2014) Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol 153:145–152

    Article  CAS  PubMed  Google Scholar 

  • Petrovas C, Price DA, Mattapallil J, Ambrozak DR, Geldmacher C, Cecchinato V, Vaccari M, Tryniszewska E, Gostick E, Roederer M (2007) SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood 110:928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porichis F, Kaufmann DE (2012) Role of PD-1 in HIV pathogenesis and as target for therapy. Curr HIV/AIDS Rep 9:81–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng S-L (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  PubMed  Google Scholar 

  • Prokunina L, Castillejo-López C, Öberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdóttir H, Gröndal G (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  CAS  PubMed  Google Scholar 

  • Pyo J-S, Kang G, Kim JY (2017) Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis. Int J Biol Markers 32:e68

    Article  PubMed  Google Scholar 

  • Qiu H, Zheng L, Tang W, Yin P, Cheng F, Wang L (2014) Programmed death-1 (PD-1) polymorphisms in Chinese patients with esophageal cancer. Clin Biochem 47:612–617

    Article  CAS  PubMed  Google Scholar 

  • QU CK (2000) The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Res 10:279–288

    Article  CAS  PubMed  Google Scholar 

  • Ren H-T, Li Y-M, Wang X-J, Kang H-F, Jin T-B, Ma X-B, Liu X-H, Wang M, Liu K, Xu P (2016) PD-1 rs2227982 polymorphism is associated with the decreased risk of breast cancer in northwest Chinese women: a hospital-based observational study. Medicine 95:e3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229:114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritprajak P, Azuma M (2015) Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol 51:221–228

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R (2006) Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med 12:1056–1064

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Tatemaysu T, Okuda K, Moriyama S, Yano M, Fujii Y (2014) PD-1 gene promoter polymorphisms correlate with a poor prognosis in non-small cell lung cancer. Mol Clin Oncol 2:1035–1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Savabkar S, Azimzadeh P, Chaleshi V, Mojarad EN, Aghdaei HA (2013) Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with gastric cancer. Gastroenterology and hepatology from bed to bench 6

  • Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, Rimm DL (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 20:2773–2782

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8:239–245

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Snyder MW, Adey A, Kitzman JO, Shendure J (2015) Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet 16:344–358

    Article  CAS  PubMed  Google Scholar 

  • Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63:6501–6505

    CAS  PubMed  Google Scholar 

  • Suarez-Gestal M, Ferreiros-Vidal I, Ortiz J, Gomez-Reino J, Gonzalez A (2008) Analysis of the functional relevance of a putative regulatory SNP of PDCD1, PD1. 3, associated with systemic lupus erythematosus. Genes Immun 9:309–315

    Article  CAS  PubMed  Google Scholar 

  • Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Chen Y, Chen S, Sun B, Gu H, Kang M (2015) Programmed death-1 (PD-1) polymorphism is associated with gastric cardia adenocarcinoma. Int J Clin Exp Med 8:8086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, Honjo T (2011) IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779

    Article  CAS  PubMed  Google Scholar 

  • Thompson RH, Dong H, Kwon ED (2007) Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res 13:709s–715s

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2012a) Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB (2012b) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno T, Ohtawa K, Mitsui K, Kodera Y, Hiroto M, Matsushima A, Inada Y, Nishimura H (1997) Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia 11:1858–1861

    Article  CAS  PubMed  Google Scholar 

  • Vibhakar R, Juan G, Traganos F, Darzynkiewicz Z, Finger LR (1997) Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp Cell Res 232:25–28

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ma Q, Chen X, Guo K, Li J, Zhang M (2010) Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma. World J Surg 34:1059–1065

    Article  PubMed  Google Scholar 

  • Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, Romaguera J, Hagemeister F, Fanale M, Samaniego F (2014) Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 15:69–77

    Article  CAS  PubMed  Google Scholar 

  • Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226:352–364

    Article  CAS  PubMed  Google Scholar 

  • Wilmotte R, Burkhardt K, Kindler V, Belkouch M-C, Dussex G, de Tribolet N, Walker PR, Dietrich P-Y (2005) B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport 16:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7-H1 by glioma cells a potential mechanism of immune paralysis. Cancer Res 63:7462–7467

    CAS  PubMed  Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong RM, Scotland RR, Lau RL, Wang C, Korman AJ, Kast W, Weber JS (2007) Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol 19:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Zhu Y, Jiang J, Zhao J, Zhang X-G, Xu N (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24

    Article  PubMed  Google Scholar 

  • Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 69:8067–8075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Zheng X-Y, Qin J, Wang Y-B, Bai Y, Mao Q-Q, Wan Q, Wu Z-M, Xie L-P (2008a) Up-regulation of p21 WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett 265:206–214

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Chen PW, Li H, Alizadeh H, Niederkorn JY (2008b) PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. Invest Ophthalmol Vis Sci 49:2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin L, Guo H, Zhao L, Wang J (2013) The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population. Int J Clin Exp Med 7:5832–5836

    Google Scholar 

  • Yin L, Guo H, Zhao L, Wang J (2014) The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population. Int J Clin Exp Med 7:5832

    PubMed  PubMed Central  Google Scholar 

  • Youngblood B, Oestreich KJ, Ha S-J, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity 35:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi AR, Karimi MH, Shamsdin SA, Mehrabani D, Hosseini SV, Erfani N, Bolandparvaz S, Bagheri K (2013) PD-1 Gene polymorphisms in Iranian patients with colorectal cancer. Lab Med 44:241–244

    Article  Google Scholar 

  • Yu D-H, Qu C-K, Henegariu O, Lu X, Feng G-S (1998) Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 273:21125–21131

    Article  CAS  PubMed  Google Scholar 

  • Zamani MR, Asbagh FA, Massoud AH, Salmaninejad A, Massoud A, Rezaei N (2015) Association between a PD-1 gene polymorphism and antisperm antibody-related infertility in Iranian men. J Assist Reprod Genet 32:103–106

    Article  PubMed  Google Scholar 

  • Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol

  • Zhang X, Schwartz J-CD, Guo X, Bhatia S, Cao E, Chen L, Zhang Z-Y, Edidin MA, Nathenson SG, Almo SC (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20:337–347

    Article  CAS  PubMed  Google Scholar 

  • Zhou R-M, Li Y, Wang N, Huang X, Cao S-R, Shan B-E (2016) Association of programmed death-1 polymorphisms with the risk and prognosis of esophageal squamous cell carcinoma. Cancer Genet 209:365–375

    Article  CAS  PubMed  Google Scholar 

  • Zinselmeyer BH, Heydari S, Sacristán C, Nayak D, Cammer M, Herz J, Cheng X, Davis SJ, Dustin ML, McGavern DB (2013) PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med 210:757–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by a research grant from the Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Mostafa Hosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmaninejad, A., Khoramshahi, V., Azani, A. et al. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics 70, 73–86 (2018). https://doi.org/10.1007/s00251-017-1015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-017-1015-5

Keywords

Navigation