Skip to main content

Characterization of MHC class IA in the endangered southern corroboree frog


Southern corroboree frogs (Pseudophryne corroboree) have declined to near extinction in the wild after the emergence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in southeastern Australia in the 1980s. A major captive breeding and reintroduction program is underway to preserve this iconic species, but improving resistance to B. dendrobatidis would help the wild population to be self-sustaining. Using 3′ and 5′ rapid amplification of complementary DNA ends (RACE), we characterized the major histocompatibility complex (MHC) class IA locus in this species. We then used sequences generated from RACE to design primers to amplify the peptide-binding region (PBR) of this functional genetic marker. Finally, we analysed the diversity, phylogeny, and selection patterns of PBR sequences from four P. corroboree populations and compared this with other amphibian species. We found moderately high MHC class IA genetic diversity in this species and evidence of strong positive and purifying selection at sites that are associated with putative PBR pockets in other species, indicating that this gene region may be under selection for resistance to Bd. Future studies should focus on identifying alleles associated with Bd resistance in P. corroboree by performing a Bd laboratory challenge study to confirm the functional importance of our genetic findings and explore their use in artificial selection or genetic engineering to increase resistance to chytridiomycosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci U S A 101:3490–3494. doi:10.1073/pnas.0306582101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar JR-d, Westerdahl H, Puente JM-d, Tomás G, Martínez J, Merino S (2016) MHC-I provides both quantitative resistance and susceptibility to blood parasites in blue tits in the wild. J Avian Biol. doi:10.1111/jav.00830

    Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Barribeau SM, Villinger J, Waldman B (2008) Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians. PLoS One 3:e2692. doi:10.1371/journal.pone.0002692

    Article  PubMed  PubMed Central  Google Scholar 

  • Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D,l McFadden M, Scheele B. Brannelly LA, Macris A, Harlow PS, Bell S,  Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc R Soc Lond B Biol Sci 282:20143127

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Brannelly LA, Berger L, Marrantelli G, Skerratt LF (2015) Low humidity is a failed treatment option for chytridiomycosis in the critically endangered southern corroboree frog. Wildl Res 42:44–49

    Article  CAS  Google Scholar 

  • Brannelly LA, Webb R, Skerratt LF, Berger L (2016) Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis. Open Biology 6. doi:10.1098/rsob.150251

  • Brannelly LA (2016) Investigating disease ecology, pathogenesis and population persistence of frogs threatened by chytridiomycosis to improve management outcomes. Master’s Thesis, James Cook University.

  • Delport W, Poon AF, Frost SD, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didinger C, Eimes JA, Lillie M, Waldman B (2017) Multiple major histocompatibility complex class I genes in Asian anurans: ontogeny and phylogeny. Dev Comp Immunol (in press)

  • Ellison AR, Tunstall T, Direnzo GV, Hughey MC, Rebollar EA, Belden LK, Harris RN, Ibanez R, Lips KR, Zamudio KR (2014) More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Biol Evol 7:286–298

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Flajnik MF, Ohta Y, Greenberg AS, Salter-Cid L, Carrizosa A, Du Pasquier L, Kasahara M (1999) Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. J Immunol 163:3826–3833

    CAS  PubMed  Google Scholar 

  • Galan M, Guivier E, Caraux G, Charbonnel N, Cosson J-F (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 11:296

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldsby RA, Osborne BA, Kuby J. (2002) Immunology, 5th edn, WH Freeman, San Francisco 

  • Hunter D (2012) National Recovery Plan for the southern corroboree frog Pseudophryne corroboree and northern corroboree frog Pseudophryne pengilleyi. Office of Environment and Heritage (NSW), Hurstville

    Google Scholar 

  • Hunter D, Osborne W, Smith M, McDougall K (2009) Breeding habitat use and the future management of the critically endangered southern corroboree frog. Ecol Manag Restor 10:S103–S109. doi:10.1111/j.1442-8903.2009.00461.x

  • Hunter D, Marantelli G, McFadden M, Harlow P, Scheele B, Pietsch R (2010a) Assessment of re-introduction methods for the southern corroboree frog in the Snowy Mountains region of Australia. Global re-introduction perspectives: additional case-studies from around the globe IUCN/SSC Reintroduction Specialist Group, Abu Dhabi. 72–76

  • Hunter DA, Speare R, Marantelli G, Mendez D, Pietsch R, Osborne W (2010b) Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened corroboree frog populations in the Australian Alps. Dis Aquat Org 92:209–216

    Article  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Capra JD (2005) Immunobiology: the immune system in health and disease, 5th edn. Garland Press, New York

    Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Computer applications in the biosciences: CABIOS 8:275–282

    CAS  PubMed  Google Scholar 

  • Kagi D, Vignaux F, Ledermann B, Burkl K, Depraetere V, Nagata S, Hengartner H, Golstein P (1994) Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265:528–530

  • Kiemnec-Tyburczy K, Richmond J, Savage A, Lips K, Zamudio K (2012) Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity 109:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Figueroa F (1986) Evolution of the major histocompatibility complex. Crit Rev Immunol 6:295-386

  • Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. doi:10.1093/molbev/msi105

    Article  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi:10.1093/molbev/msl051

    Article  PubMed  Google Scholar 

  • Kosch TA, Bataille A, Didinger C, Eimes JA, Rodríguez-Brenes S, Ryan MJ, Waldman B (2016) Major histocompatibility complex selection dynamics in pathogen-infected túngara frog (Physalaemus pustulosus) populations. Biol Lett 12. doi:10.1098/rsbl.2016.0345

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. doi:10.1093/molbev/msw054

    PubMed Central  Google Scholar 

  • Lees C, McFadden M, Hunter D (2013) Genetic management of southern corroboree frogs: workshop report and plan. IUCN Conservation Breeding Specialist Group, Apple Valley, MN

    Google Scholar 

  • Lillie M, Shine R, Belov K (2014) Characterisation of major histocompatibility complex class I in the Australian cane toad, Rhinella marina. PLoS One 9:e102824

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumura M, Fremont DH, Peterson PA, Wilson IA (1992) Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:927–934

    Article  CAS  PubMed  Google Scholar 

  • McFadden M, Hobbs R, Marantelli G, Harlow P, Banks C, Hunter D (2013) Captive management and breeding of the critically endangered southern corroboree frog (Pseudophryne corroboree)(Moore 1953) at Taronga and Melbourne zoos. Amphib Reptile Conserv 5:70–87

  • Morgan MJ, Hunter D, Pietsch R, Osborne W, Keogh JS (2008) Assessment of genetic diversity in the critically endangered Australian corroboree frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies four evolutionarily significant units for conservation. Mol Ecol 17:3448–3463

    PubMed  Google Scholar 

  • Murray KA et al (2011) Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. J Appl Ecol 48:163–173

    Article  Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. doi:10.1371/journal.pgen.1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne W, Norman J (1991) Conservation genetics of corroboree frogs, Pseudophryne corroboree Moore (Anura, Myobatrachidae): population subdivision and genetic-divergence. Austral Zool 39:285–297

  • Raffel TR, Rohr JR, Kiesecker JM, Hudson PJ (2006) Negative effects of changing temperature on amphibian immunity under field conditions. Funct Ecol 20:819–828. doi:10.1111/j.1365-2435.2006.01159.x

    Article  Google Scholar 

  • Raffel TR, Romansic JM, Halstead NT, McMahon TA, Venesky MD, Rohr JR (2012) Disease and thermal acclimation in a more variable and unpredictable climate. Nat Clim Chang 3:146–151. doi:10.1038/nclimate1659

    Article  Google Scholar 

  • Richards-Zawacki CL (2010) Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc R Soc B 277:519–528. doi:10.1098/rspb.2009.1656

  • Richmond JQ, Savage AE, Zamudio KR, Rosenblum EB (2009) Toward immunogenetic studies of amphibian chytridiomycosis: linking innate and acquired immunity. Bioscience 59:311–320. doi:10.1525/bio.2009.59.4.9

    Article  Google Scholar 

  • Roilides E, Dimitriadou-Georgiadou A, Sein T, Kadiltsoglou I, Walsh TJ (1998) Tumor necrosis factor alpha enhances antifungal activities of polymorphonuclear and mononuclear phagocytes against Aspergillus fumigatus. Infect Immun 66:5999–6003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci U S A 108:16705–16710. doi:10.1073/pnas.1106893108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage AE, Zamudio KR (2016) Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proc R Soc B 283. doi:10.1098/rspb.2015.3115

  • Scheele BC, Hunter DA, Brannelly LA, Skerratt LF, Driscoll DA (2016) Reservoir-host amplification of disease impact in an endangered amphibian. Conserv Biol. doi:10.1111/cobi.12830

  • Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE, McFadden MS, Marantelli G, Skerratt LF, Driscoll DA (2014) Interventions for Reducing Extinction Risk in Chytridiomycosis‐Threatened Amphibians. Conserv Biol 28:1195–1205. doi:10.1111/cobi.12322

  • Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499. doi:10.1093/bioinformatics/btl427

    Article  CAS  PubMed  Google Scholar 

  • Scotto-Lavino E, Du G, Frohman MA (2006a) 3′ end cDNA amplification using classic RACE. Nat Protoc 1:2742–2745. doi:10.1038/nprot.2006.481

    Article  CAS  PubMed  Google Scholar 

  • Scotto-Lavino E, Du G, Frohman MA (2006b) 5′ end cDNA amplification using classic RACE. Nat Protoc 1:2555–2562. doi:10.1038/nprot.2006.480

    Article  CAS  PubMed  Google Scholar 

  • Stevens DA, Brummer E, Clemons Karl V (2006) Interferon-γ as an antifungal. J Infect Dis 194:S33–S37. doi:10.1086/505357

    Article  CAS  PubMed  Google Scholar 

  • Teacher AGF, Garner TWJ, Nichols RA (2009) Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). PLoS One 4:e4616. doi:10.1371/journal.pone.0004616

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Qiu M, Yang J, Zhao X, Wang Y, Zhu Q, Liu Y (2014) Sequence variations of the MHC class I gene exon 2 and exon 3 between infected and uninfected chickens challenged with Marek’s disease virus. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 21:103–109. doi:10.1016/j.meegid.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Anderson A, DeLisi C (1998) Structural principles that govern the peptide-binding motifs of class I MHC molecules1. J Mol Biol 281:929–947. doi:10.1006/jmbi.1998.1982

    Article  CAS  PubMed  Google Scholar 

Download references


We thank Gerry Marantelli of the Amphibian Research Centre for providing the P. corroboree used in this study. Funding was provided by the Australian Research Council grants LP110200240 and FT100100375, the National Research Foundation of Korea grant 2015R1D1A1A01057282 (to B.W.) funded by the government of the Republic of Korea (MOE), the Taronga Conservation Society, and the New South Wales Office of Environment and Heritage.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tiffany A. Kosch.

Ethics declarations

The authors declare that they have no conflict of interest. Ethical approval was granted by James Cook University for this study under application A1875, entitled “Innate and adaptive immune mechanisms against amphibian chytrid fungus and non-chemotherapeutic treatment methods”.

Electronic supplementary material


(DOCX 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosch, T.A., Eimes, J.A., Didinger, C. et al. Characterization of MHC class IA in the endangered southern corroboree frog. Immunogenetics 69, 165–174 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Major histocompatibility complex
  • Pseudophryne corroboree
  • Batrachochytrium dendrobatidis
  • Genetic variation
  • Chytrid fungus
  • Amphibian declines