Advertisement

Immunogenetics

, Volume 69, Issue 3, pp 133–143 | Cite as

Characterization of the antimicrobial peptide family defensins in the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii)

  • Elizabeth A. Jones
  • Yuanyuan Cheng
  • Denis O’Meally
  • Katherine Belov
Original Article

Abstract

Defensins comprise a family of cysteine-rich antimicrobial peptides with important roles in innate and adaptive immune defense in vertebrates. We characterized alpha and beta defensin genes in three Australian marsupials: the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii) and identified 48, 34, and 39 defensins, respectively. One hundred and twelve have the classical antimicrobial peptides characteristics required for pathogen membrane targeting, including cationic charge (between 1+ and 15+) and a high proportion of hydrophobic residues (>30%). Phylogenetic analysis shows that gene duplication has driven unique and species-specific expansions of devil, koala, and tammar wallaby beta defensins and devil alpha defensins. Defensin genes are arranged in three genomic clusters in marsupials, whereas further duplications and translocations have occurred in eutherians resulting in four and five gene clusters in mice and humans, respectively. Marsupial defensins are generally under purifying selection, particularly residues essential for defensin structural stability. Certain hydrophobic or positively charged sites, predominantly found in the defensin loop, are positively selected, which may have functional significance in defensin-target interaction and membrane insertion.

Keywords

Tasmanian devil Koala Tammar wallaby Defensin Evolution 

Notes

Acknowledgements

This research was supported by the Australian Research Council. We thank Rebecca Johnson, Marc Wilkins, and Peter Timms and other colleagues in the Koala Genome Consortium for providing access to koala sequence data prior to public release.

Authors’ contributions

KB, YC, and DOM conceived and designed the study. EAJ carried out analyses under the supervision of YC and DOM and drafted the paper. KB, YC, and DOM revised the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

No ethics approval was required for this study.

Supplementary material

251_2016_959_MOESM1_ESM.pdf (270 kb)
Supplementary Table 1 Database accession details (PDF 270 kb)
251_2016_959_MOESM2_ESM.pdf (155 kb)
Supplementary Table 2 Tasmanian devil, koala and tammar wallaby defensin and flanking gene scaffold/contig coordinates. Defensin transcription details, previously predicted accession number and protein sequences with predicted mature peptide highlighted in red. (PDF 155 kb)
251_2016_959_MOESM3_ESM.pdf (194 kb)
Supplementary Table 3 Accession numbers and resources for human, mouse, rat, chimpanzee and opossum, sequences used in this study (PDF 194 kb)
251_2016_959_MOESM4_ESM.pdf (89 kb)
Supplementary Table 4 Defensins charge and hydrophobicity characteristics (PDF 89 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersson M, Karlsson-Sjöberg J, Pütsep KL (2012) CRS-peptides: unique defense peptides of mouse Paneth cells. Mucosal immunology 5:367–376CrossRefPubMedGoogle Scholar
  3. Aoki W, Ueda M (2013) Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals 6:1055–1081CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belov K, Sanderson CE, Deakin JE et al (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17:982–991CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bowdish D, Davidson D, Hancock R (2006) Immunomodulatory properties of defensins and cathelicidins. In: Antimicrobial peptides and human disease. Springer, BerlinGoogle Scholar
  6. Broekaert WF, Terras F, Cammue B, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campopiano DJ, Clarke DJ, Polfer NC et al (2004) Structure-activity relationships in defensin dimers a novel link between β-defensin tertiary structure and antimicrobial activity. J Biol Chem 279:48671–48679CrossRefPubMedGoogle Scholar
  8. Chappuis G (1998) Neonatal immunity and immunisation in early age: lessons from veterinary medicine. Vaccine 16:1468–1472CrossRefPubMedGoogle Scholar
  9. Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW (2015) Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 15:188CrossRefPubMedPubMedCentralGoogle Scholar
  10. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cunningham F, Amode MR, Barrell D et al (2015) Ensembl 2015. Nucleic Acids Res 43:D662–D669CrossRefPubMedGoogle Scholar
  12. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074PubMedPubMedCentralGoogle Scholar
  13. de la Vega RR, Possani LD (2005) On the evolution of invertebrate defensins. Trends Genet 21:330–332CrossRefGoogle Scholar
  14. Delport W, Poon AF, Frost SD, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457CrossRefPubMedPubMedCentralGoogle Scholar
  15. Easton DM, Nijnik A, Mayer ML, Hancock RE (2009) Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol 27:582–590CrossRefPubMedGoogle Scholar
  16. Edgerton M, Koshlukova SE, Araujo MW, Patel RC, Dong J, Bruenn JA (2000) Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob Agents Chemother 44:3310–3316CrossRefPubMedPubMedCentralGoogle Scholar
  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  18. Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, Weinberg A (2005) Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J Dent Res 84:445–450CrossRefPubMedGoogle Scholar
  19. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res gkr367Google Scholar
  20. Ganz T, Selsted ME, Szklarek D et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Investig 76:–1427Google Scholar
  21. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720CrossRefPubMedGoogle Scholar
  22. Ganz T (2004) Defensins: antimicrobial peptides of vertebrates. Comptes Rendus Biologies 327:539–549CrossRefPubMedGoogle Scholar
  23. Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA (2008) PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 36:W35–W41CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–590CrossRefPubMedGoogle Scholar
  25. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J (2007) Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human α-defensin family. J Immunol 179:3958–3965CrossRefPubMedGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium seriesGoogle Scholar
  27. Hewavisenti RV, Morris KM, O’Meally D, Cheng Y, Papenfuss AT, Belov K (2016) The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii). Peer J 4:e1569CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hobbs M, Pavasovic A, King AG et al (2014) A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity. BMC Genomics 15:1CrossRefGoogle Scholar
  29. Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415CrossRefPubMedGoogle Scholar
  30. Huang GT-J, Zhang H-B, Kim D, Liu L, Ganz T (2002) A model for antimicrobial gene therapy: demonstration of human β-defensin 2 antimicrobial activities in vivo. Hum Gene Ther 13:2017–2025CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hughes A (1999) Evolutionary diversification of the mammalian defensins. Cellular and Molecular Life Sciences CMLS 56:94–103CrossRefPubMedGoogle Scholar
  32. Hughes AL, Yeager M (1997) Coordinated amino acid changes in the evolution of mammalian defensins. J Mol Evol 44:675–682CrossRefPubMedGoogle Scholar
  33. Kabat E (1969) Antigenic determinants and antibody complementarity. Folia allergologica 17:425–425Google Scholar
  34. Kini R, Evans HJ (1989) A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. Int J Pept Protein Res 34:277–286CrossRefPubMedGoogle Scholar
  35. Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann W-G, Adermann K (2005) Structure-activity relation of human β-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44:9804–9816CrossRefPubMedGoogle Scholar
  36. Klüver E, Adermann K, Schulz A (2006) Synthesis and structure–activity relationship of β-defensins, multi-functional peptides of the immune system. J Pept Sci 12:243–257CrossRefPubMedGoogle Scholar
  37. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefPubMedGoogle Scholar
  38. Lachish S, Jones M, McCallum H (2007) The impact of disease on the survival and population growth rate of the Tasmanian devil. J Anim Ecol 76:926–936CrossRefPubMedGoogle Scholar
  39. Lai R, Liu H, Lee WH, Zhang Y (2002) An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun 295:796–799CrossRefPubMedGoogle Scholar
  40. Lehrer R, Barton A, Daher KA, Harwig S, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Investig 84:553CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11:23–27CrossRefPubMedGoogle Scholar
  42. Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102CrossRefPubMedGoogle Scholar
  43. Liu L, Zhao C, Heng HH, Ganz T (1997) The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43:316–320CrossRefPubMedGoogle Scholar
  44. Mangoni ME, Aumelas A, Charnet P et al (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383:93–98CrossRefPubMedGoogle Scholar
  45. McCallum H, Tompkins DM, Jones M et al (2007) Distribution and impacts of Tasmanian devil facial tumor disease. EcoHealth 4:318–325CrossRefGoogle Scholar
  46. Mensa B, Howell GL, Scott R, DeGrado WF (2014) Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother 58:5136–5145CrossRefPubMedPubMedCentralGoogle Scholar
  47. Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mamm Evol 15:1–36CrossRefGoogle Scholar
  48. Michaelson D, Rayner J, Couto M, Ganz T (1992) Cationic defensins arise from charge-neutralized propeptides: a mechanism for avoiding leukocyte autocytotoxicity? J Leukoc Biol 51:634–639PubMedGoogle Scholar
  49. Murchison EP, Schulz-Trieglaff OB, Ning Z et al (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791CrossRefPubMedPubMedCentralGoogle Scholar
  50. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SK (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764CrossRefPubMedPubMedCentralGoogle Scholar
  51. Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205CrossRefPubMedPubMedCentralGoogle Scholar
  52. Narciandi F, Lloyd AT, Chapwanya A, O’ Farrelly C, Meade KG (2011) Reproductive tissue-specific expression profiling and genetic variation across a 19 gene bovine beta-defensin cluster. Immunogenetics 63:641–651CrossRefPubMedGoogle Scholar
  53. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, LondonGoogle Scholar
  54. Ouellette A, Selsted M (1996) Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J 10:1280–1289PubMedGoogle Scholar
  55. Patil A, Hughes AL, Zhang G (2004) Rapid evolution and diversification of mammalian α-defensins as revealed by comparative analysis of rodent and primate genes. Physiol Genomics 20:1–11CrossRefPubMedGoogle Scholar
  56. Patil AA, Cai Y, Sang Y, Blecha F, Zhang G (2005) Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics 23:5–17CrossRefPubMedGoogle Scholar
  57. Patil AA, Ouellette AJ, Lu W, Zhang G (2013) Rattusin, an intestinal α-defensin-related peptide in rats with a unique cysteine spacing pattern and salt-insensitive antibacterial activities. Antimicrob Agents Chemother 57:1823–1831CrossRefPubMedPubMedCentralGoogle Scholar
  58. Peel E, Cheng Y, Djordjevic J, Fox S, Sorrell T, Belov K (2016) Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Scientific Reports 6Google Scholar
  59. Pemberton D, Gales S, Bauer B, Gales R, Lazenby B, Medlock K (2008) The diet of the Tasmanian devil, Sarcophilus harrisii, as determined from analysis of scat and stomach contents. Papers and Proceedings of the Royal Society of TasmaniaGoogle Scholar
  60. Phillips MJ, McLenachan PA, Down C, Gibb GC, Penny D (2006) Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. Syst Biol 55:122–137CrossRefPubMedGoogle Scholar
  61. Polkinghorne A, Hanger J, Timms P (2013) Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet Microbiol 165:214–223CrossRefPubMedGoogle Scholar
  62. Pond SLK, Frost SD (2005a) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533CrossRefPubMedGoogle Scholar
  63. Pond SLK, Frost SD (2005b) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222CrossRefGoogle Scholar
  64. Renfree MB, Papenfuss AT, Deakin JE et al (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:1–26CrossRefGoogle Scholar
  65. Rhodes JR, Ng CF, de Villiers DL, Preece HJ, McAlpine CA, Possingham HP (2011) Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol Conserv 144:1081–1088CrossRefGoogle Scholar
  66. Romestand B, Molina F, Richard V, Roch P (2003) Key role of the loop connecting the two beta strands of mussel defensin in its antimicrobial activity. Eur J Biochem 270:2805–2813CrossRefPubMedGoogle Scholar
  67. Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Seminars in immunology, ElsevierGoogle Scholar
  68. Schibli DJ, Hunter HN, Aseyev V et al (2002) The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277:8279–8289CrossRefPubMedGoogle Scholar
  69. Schutte BC, Mitros JP, Bartlett JA et al (2002) Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci 99:2129–2133CrossRefPubMedPubMedCentralGoogle Scholar
  70. Selsted M, Harwig S, Ganz T, Schilling J, Lehrer R (1985) Primary structures of three human neutrophil defensins. J Clin Investig 76:1436CrossRefPubMedPubMedCentralGoogle Scholar
  71. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557CrossRefPubMedGoogle Scholar
  72. Semple CA, Rolfe M, Dorin JR (2003) Duplication and selection in the evolution of primate b-defensin genes. Genome Biol 4:R31CrossRefPubMedPubMedCentralGoogle Scholar
  73. Steffen H, Rieg S, Wiedemann I et al (2006) Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob Agents Chemother 50:2608–2620CrossRefPubMedPubMedCentralGoogle Scholar
  74. Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S (2011) Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 216:322–333CrossRefPubMedGoogle Scholar
  75. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tennessen J (2005) Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection. J Evol Biol 18:1387–1394CrossRefPubMedGoogle Scholar
  77. Tew GN, Scott RW, Klein ML, DeGrado WF (2009) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39CrossRefGoogle Scholar
  78. Thevissen K, Kristensen H-H, Thomma BP, Cammue BP, François IE (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971CrossRefPubMedGoogle Scholar
  79. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tollner TL, Venners SA, Hollox EJ et al (2011) A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci Transl Med 3:92ra65CrossRefPubMedPubMedCentralGoogle Scholar
  81. Valore EV, Ganz T (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 79:1538–1544PubMedGoogle Scholar
  82. Varkey J, Nagaraj R (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 49:4561–4566CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang J, Wong ES, Whitley JC et al (2011) Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 6:e24030CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wei L, Che H, Han Y et al (2015) The first anionic defensin from amphibians. Amino Acids 47:1301–1308CrossRefPubMedGoogle Scholar
  86. White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5:521–527CrossRefPubMedGoogle Scholar
  87. Wong ES, Papenfuss AT, Heger A et al (2011) Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby. BMC Genomics 12:420CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wu Z, Hoover DM, Yang D et al (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc Natl Acad Sci 100:8880–8885CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yang D, Chertov O, Bykovskaia S et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528CrossRefPubMedGoogle Scholar
  90. Yang Y-S, Mitta G, Chavanieu A et al (2000) Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 39:14436–14447CrossRefPubMedGoogle Scholar
  91. Yenugu S, Hamil KG, Radhakrishnan Y, French FS, Hall SH (2004) The androgen-regulated epididymal sperm-binding protein, human β-defensin 118 (DEFB118)(formerly ESC42), is an antimicrobial β-defensin. Endocrinology 145:3165–3173CrossRefPubMedGoogle Scholar
  92. Zhou CX, Zhang Y-L, Xiao L et al (2004) An epididymis-specific β-defensin is important for the initiation of sperm maturation. Nat Cell Biol 6:458–464CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elizabeth A. Jones
    • 1
  • Yuanyuan Cheng
    • 1
  • Denis O’Meally
    • 1
    • 2
  • Katherine Belov
    • 1
  1. 1.Faculty of Veterinary Science, School of Life and Environmental SciencesUniversity of SydneyCamperdownAustralia
  2. 2.Centre for Animal Health InnovationUniversity of the Sunshine CoastSippy DownsAustralia

Personalised recommendations