Skip to main content

Advertisement

Log in

Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii)

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Babik W, Pabijan M, Arntzen J, Cogalniceanu D, Durka W, Radwan J (2009) Long‐term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol 18:769–781

    Article  CAS  PubMed  Google Scholar 

  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528–533

    Article  CAS  PubMed  Google Scholar 

  • Bharti D et al. (2014) The role of TLR9 polymorphism in susceptibility to pulmonary tuberculosis. Immunogenetics: 1–7

  • Bochud P-Y et al (2007) Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. Aids 21:441–446

    Article  CAS  PubMed  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  PubMed  Google Scholar 

  • Brown OJ (2006) Tasmanian devil (Sarcophilus harrisii) extinction on the Australian mainland in the mid-Holocene: multicausality and ENSO intensification vol 30

  • Brüniche-Olsen A, Jones ME, Austin JJ, Burridge CP, Holland BR (2014) Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol lett 10:20140619

    Article  PubMed  Google Scholar 

  • Casanova J-L, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  CAS  PubMed  Google Scholar 

  • Castro-Prieto A, Wachter B, Sommer S (2011) Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol Biol Evol 28:1455–1468

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Belov K (2014) Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 66:727–735. doi:10.1007/s00251-014-0804-3

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Hartman G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Natl Acad Sci U S A 90:8150–8153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fredrickson RJ, Siminski P, Woolf M, Hedrick PW (2007) Genetic rescue and inbreeding depression in Mexican wolves. P Roy Soc B-Biol Sci 274:2365–2371

    Article  Google Scholar 

  • Georgel P, Macquin C, Bahram S (2009) The heterogeneous allelic repertoire of human Toll-like receptor (TLR) genes. PLoS ONE 4:e7803

    Article  PubMed Central  PubMed  Google Scholar 

  • Grueber CE, Wallis GP, King TM, Jamieson IG (2012) Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS ONE 7:e45011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutierrez‐Espeleta GA, Hedrick PW, Kalinowski ST, Garrigan D, Boyce WM (2001) Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation. Heredity 86:439–450

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series pp 95–98

  • Hawkins C et al (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol Conserv 131:307–324

  • Hawn TR et al (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med 198:1563–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci U S A 102:2487–2489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hedrick PW, Lee RN, Buchanan C (2003) Canine parvovirus enteritis, canine distemper, and major histocompatibility complex genetic variation in Mexican wolves. J Wildl Dis 39:909–913

    Article  PubMed  Google Scholar 

  • Heng J, Su J, Huang T, Dong J, Chen L (2011) The polymorphism and haplotype of < i > TLR3</i > gene in grass carp (< i > Ctenopharyngodon idella </i>) and their associations with susceptibility/resistance to grass carp reovirus. Fish Shellfish Immunol 30:45–50

    Article  CAS  PubMed  Google Scholar 

  • Hidmark A, von Saint PA, Dalpke AH (2012) Cutting edge: TLR13 is a receptor for bacterial RNA. J Immunol 189:2717–2721

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  CAS  PubMed  Google Scholar 

  • Jin MS, Lee J-O (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–191

    Article  CAS  PubMed  Google Scholar 

  • Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209

    Article  CAS  PubMed  Google Scholar 

  • Jones ME et al (2008) Life-history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci U S A 105:10023–10027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struc Biol 11:725–732

    Article  CAS  Google Scholar 

  • Lazarus R et al (2004) Toll-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Resp Crit Care 170:594–600

    Article  Google Scholar 

  • Lazzaro BP, Sceurman BK, Clark AG (2004) Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303:1873–1876

    Article  CAS  PubMed  Google Scholar 

  • Li X-D, Chen ZJ (2012) Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. Elife 1

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Manzoor Z, Koh Y-S (2012) Bacterial 23S ribosomal RNA, a ligand for Toll-like receptor 13. J Bacteriol Virol 42:357–358

    Article  CAS  Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    Article  CAS  PubMed  Google Scholar 

  • McCallum H et al (2007) Distribution and impacts of Tasmanian devil facial tumor disease. EcoHealth 4:318–325

    Article  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow‐necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Miller W et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci U S A 108:12348–12353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mockenhaupt FP et al (2006) Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci U S A 103:177–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris K, Austin JJ, Belov K (2013) Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biol lett 9:20120900

    Article  PubMed Central  PubMed  Google Scholar 

  • Murchison EP et al (2010) The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327:84–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murchison EP et al (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasare C, Medzhitov R (2005) Toll-like receptors: linking innate and adaptive immunity. In: Mechanisms of Lymphocyte Activation and Immune Regulation X. Springer, pp 11–18

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reismann P et al (2004) Lack of association between polymorphisms of the Toll-like receptor 4 gene and cerebral ischemia. J Neurol 251:853–858

    CAS  PubMed  Google Scholar 

  • Roach JC et al (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sackesen C et al (2005) The effect of polymorphisms at the CD14 promoter and the TLR4 gene on asthma phenotypes in Turkish children with asthma. Allergy 60:1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Siddle HV, Sanderson C, Belov K (2007) Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59:753–760

    Article  CAS  PubMed  Google Scholar 

  • Siddle HV, Marzec J, Cheng Y, Jones M, Belov K (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. P Roy Soc B-Biol Sci 277:2001–2006

    Article  CAS  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tantisira K et al (2004) Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immunol 5:343–346

    Article  CAS  Google Scholar 

  • Uematsu S, Akira S (2007) Toll-like receptors and type I interferons. J Biol Chem 282:15319–15323

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Zhao Z, Wang H, Jin L, Liu C, Wang Y, Li J (2010) Toll like receptors 2 and 4 gene polymorphisms in a southeastern Chinese population with tuberculosis. Int J Immunogenet 37:135–138

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-y, Gao Y-n (2004) To design PCR primers with oligo 6 and primer premier 5. Bioinforma 4:003

    Google Scholar 

Download references

Acknowledgments

The wild devil samples used in this study were kindly provided by Menna Jones and Rodrigo Hamede from the School of Zoology at the University of Tasmania and the Save the Tasmanian Devil Program. We thank Carolyn Hogg from the Zoo and Aquarium Association for providing captive samples from the Save the Tasmanian Devil Insurance Program. This work was funded by an Australian Research Council grant to KB. KB is supported by an ARC Future Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Belov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 14759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Cheng, Y. & Belov, K. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 67, 195–201 (2015). https://doi.org/10.1007/s00251-014-0823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0823-0

Keywords

Navigation