Skip to main content

Advertisement

Log in

Viral CD8 T cell epitope nucleotide composition shows evidence of short- and long-term evolutionary strategies

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Viral epitopes have a distinct codon usage that reflects their dual role in infection and immunity. On the one hand, epitopes are part of proteins important to viral function; on the other hand, they are targets of the immune response. Studies of selection are most commonly based on changes of amino acid and seen through the accumulation of non-synonymous mutations. An independent measure of selection is the codon usage and underlying changeability of the nucleotide sequences. We here use multiple tools and a large-scale analysis of viral genomes to demonstrate that viral epitopes have a distinct codon usage and that this codon usage reflects distinct short- and long-term types of selection during viral evolution. We show that CD8+ T cell epitopes are encoded by codons more distant from stop codons and more changeable than codons outside epitopes. This biased codon usage reflects the viral population toggling back and forth from a wild-type sequence to an escape mode, which enable them to avoid immune detection when needed, and go back to the functionally favorable form when the threat is removed (i.e., in a new host).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Borghans JA, Beltman JB, De Boer RJ (2004) MHC polymorphism under host-pathogen coevolution. Immunogenetics 55:732–739

    Article  CAS  PubMed  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coffin JM (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483–489

    Article  CAS  PubMed  Google Scholar 

  • Delport W, Scheffler K, Seoighe C (2008) Frequent toggling between alternative amino acids is driven by selection in HIV-1. PLoS Pathog 4:e1000242

    Article  PubMed Central  PubMed  Google Scholar 

  • Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640–649

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  • Elena S, Agudelo-Romero P, Carrasco P, Codoner F, Martin S, Torres-Barcelo C, Sanjuán R (2008) Experimental evolution of plant RNA viruses. Heredity 100:478–483

    Article  CAS  PubMed  Google Scholar 

  • Ginodi I, Vider-Shalit T, Tsaban L, Louzoun Y (2008) Precise score for the prediction of peptides cleaved by the proteasome. Bioinformatics 24:477–483

    Article  CAS  PubMed  Google Scholar 

  • Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299

    Article  CAS  PubMed  Google Scholar 

  • Hershberg R, Petrov DA (2009) General rules for optimal codon choice. PLoS Genet 5:e1000556

    Article  PubMed Central  PubMed  Google Scholar 

  • Hershberg U, Shlomchik MJ (2006) Differences in potential for amino acid change after mutation reveals distinct strategies for kappa and lambda light-chain variation. Proc Natl Acad Sci U S A 103:15963–15968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanaya S, Yamada Y, Kudo Y, Ikemura T (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kijak GH, Currier JR, Tovanabutra S, Cox JH, Michael NL, Wegner SA, Birx DL, McCutchan FE (2004) Lost in translation: implications of HIV-1 codon usage for immune escape and drug resistance. AIDS Rev 6:54–60

    PubMed  Google Scholar 

  • Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713–719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lichterfeld M, Yu XG, Le Gall S, Altfeld M (2005) Immunodominance of HIV-1-specific CD8(+) T-cell responses in acute HIV-1 infection: at the crossroads of viral and host genetics. Trends Immunol 26:166–171

    Article  CAS  PubMed  Google Scholar 

  • Louzoun Y, Vider T, Weigert M (2006) T-cell epitope repertoire as predicted from human and viral genomes. Mol Immunol 43:559–569

    Article  CAS  PubMed  Google Scholar 

  • Maman Y, Blancher A, Benichou J, Yablonka A, Efroni S, Louzoun Y (2011) Immune-induced evolutionary selection focused on a single reading frame in overlapping hepatitis B virus proteins. J Virol 85:4558–4566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McMichael AJ, Gotch FM, Noble GR, Beare PA (1983) Cytotoxic T-cell immunity to influenza. N Engl J Med 309:13–17

    Article  CAS  PubMed  Google Scholar 

  • Peters B, Bulik S, Tampe R, Van Endert PM, Holzhutter HG (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 171:1741–1749

    Article  CAS  PubMed  Google Scholar 

  • Plotkin JB, Dushoff J (2003) Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc Natl Acad Sci 100:7152–7157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid BV, Kesmir C, de Boer RJ (2008) The specificity and polymorphism of the MHC class I prevents the global adaptation of HIV-1 to the monomorphic proteasome and TAP. PLoS One 3:e3525

    Article  PubMed Central  PubMed  Google Scholar 

  • Seibert SA, Howell CY, Hughes MK, Hughes AL (1995) Natural selection on the gag, pol, and env genes of human immunodeficiency virus 1 (HIV-1). Mol Biol Evol 12:803–813

    CAS  PubMed  Google Scholar 

  • Sherman LA (2006) To each (MHC molecule) its own (binding motif). J Immunol 177:2739–2740

    Article  CAS  PubMed  Google Scholar 

  • Torres BA, Kominsky S, Perrin GQ, Hobeika AC, Johnson HM (2001) Superantigens: the good, the bad, and the ugly. Exp Biol Med (Maywood) 226:164–176

    CAS  Google Scholar 

  • Vider-Shalit T, Louzoun Y (2011) MHC-I prediction using a combination of T cell epitopes and MHC-I binding peptides. J Immunol Methods 374:43–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vider-Shalit T, Fishbain V, Raffaeli S, Louzoun Y (2007) Phase-dependent immune evasion of herpesviruses. J Virol 81:9536–9545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vider-Shalit T, Sarid R, Maman K, Tsaban L, Levi R, Louzoun Y (2009) Viruses selectively mutate their CD8+ T-cell epitopes–a large-scale immunomic analysis. Bioinformatics 25:i39–i44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2009) The immune epitope database 2.0. Nucleic Acids Res: doi:10.1093/nar/gkp1004

  • Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM (2003) Antibody neutralization and escape by HIV-1. Nature 422:307–312

    Article  CAS  PubMed  Google Scholar 

  • Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333

    Article  CAS  PubMed  Google Scholar 

  • Yamao F, Andachi Y, Muto A, Ikemura T, Osawa S (1991) Levels of tRNAs in bacterial cells as affected by amino acid usage in proteins. Nucleic Acids Res 19:6119–6122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokomaku Y, Miura H, Tomiyama H, Kawana-Tachikawa A, Takiguchi M, Kojima A, Nagai Y, Iwamoto A, Matsuda Z, Ariyoshi K (2004) Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection. J Virol 78:1324–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Louzoun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maman, Y., Hershberg, U. & Louzoun, Y. Viral CD8 T cell epitope nucleotide composition shows evidence of short- and long-term evolutionary strategies. Immunogenetics 67, 15–24 (2015). https://doi.org/10.1007/s00251-014-0811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0811-4

Keywords

Navigation