Skip to main content

Advertisement

Log in

The exon 29 c.3535A>T in the alpha-2-macroglobulin gene causing aberrant splice variants is associated with mastitis in dairy cattle

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Alpha-2-macroglobulin (A2M) binds proteases, thereby acting as defense barriers against pathogens in the plasma and tissues of vertebrates and invertebrates. Quantitative real-time polymerase chain reaction (PCR) and the isobaric tags for relative and absolute quantitation method were used to determine the expression levels of A2M mRNA and proteins in mastitis-infected mammary tissues. A2M mRNA and protein expression were significantly higher in mastitis-infected mammary tissues than those in healthy tissues. We also identified 23 novel A2M splice variants in the bovine mammary tissues using reverse transcription PCR combined with clone sequencing. These splice variants predominantly affected the bait region, the inhibitory region, and the thioester region of the protein, which have the functional key roles in inhibiting the proteases of pathogens. Genomic sequencing analysis revealed a nonsynonymous c.3535A>T single-nucleotide polymorphism (SNP) in exon 29, which is located within a putative exonic splice enhancer and may be the reason why the A2M gene produces the aberrant splice variant A2M-AS4. Our findings suggest that the A2M gene can play its role by alternative splicing mechanism and it may be of significance against mastitis. This study provides clues to better understand the function of the bovine A2M gene and the effects of the exonic SNP on the production of aberrant splice variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong PB (2006) Proteases and protease inhibitors: a balance of activities in host–pathogen interaction. Immunobiology 211:263–281

    Article  PubMed  CAS  Google Scholar 

  • Armstrong PB, Quigley JP (1999) Alpha2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23:375–390

    Article  PubMed  CAS  Google Scholar 

  • Backes C, Ludwig N, Leidinger P, Harz C, Hoffmann J, Keller A, Meese E, Lenhof HP (2011) Immunogenicity of autoantigens. BMC Genomics 12:340

    Article  PubMed  CAS  Google Scholar 

  • Banks RE, Evans SW, Van Leuven F, Alexander D, McMahon MJ, Whicher JT (1990) Measurement of the ‘fast’ or complexed form of alpha 2-macroglobulin in biological fluids using a sandwich enzyme immunoassay. J Immunol Methods 126:13–20

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103:367–370

    Article  PubMed  CAS  Google Scholar 

  • Bonacci GR, Caceres LC, Sanchez MC, Chiabrando GA (2007) Activated alpha(2)-macroglobulin induces cell proliferation and mitogen-activated protein kinase activation by LRP-1 in the J774 macrophage-derived cell line. Arch Biochem Biophys 460:100–106

    Article  PubMed  CAS  Google Scholar 

  • Borth W (1992) Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J 6:3345–3353

    PubMed  CAS  Google Scholar 

  • Borth W (1994) Alpha 2-macroglobulin. A multifunctional binding and targeting protein with possible roles in immunity and autoimmunity. Ann N Y Acad Sci 737:267–272

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  • Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754

    PubMed  CAS  Google Scholar 

  • Chen Z, Wang QH, Lin L, Tang Q, Edwards JL, Li SW, Liu SQ (2012) Comparative evaluation of two isobaric labeling tags. DiART and iTRAQ. Anal Chem 84:2908–2915

    Article  PubMed  CAS  Google Scholar 

  • Drögemüller C, Reichart U, Seuberlich T, Oevermann A, Baumgartner M, Kühni Boghenbor K, Stoffel MH, Syring C, Meylan M, Müller S, Müller M, Gredler B, Sölkner J, Leeb T (2011) An unusual splice defect in the mitofusin 2 gene (MFN2) is associated with degenerative axonopathy in Tyrolean Grey cattle. PLoS One 6:e18931

    Article  PubMed  Google Scholar 

  • Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML, Barthson J, Bouwens L, Hughes L, Gregory L, Lunter G, Marselli L, Marchetti P, McCarthy MI, Cnop M (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8:e1002552

    Article  PubMed  CAS  Google Scholar 

  • Enghild JJ, Salvesen G, Thøgersen IB, Pizzo SV (1989) Proteinase binding and inhibition by the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3. J Biol Chem 264:11428–11435

    PubMed  CAS  Google Scholar 

  • Gabut M, Miné M, Marsac C, Brivet M, Tazi J, Soret J (2005) The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol Cell Biol 25:3286–3294

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546

    Article  PubMed  CAS  Google Scholar 

  • Gilboa-Geffen A, Hartmann G, Soreq H (2012) Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions. Front Mol Neurosci 5:30

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  PubMed  CAS  Google Scholar 

  • Hahn MA, McDonnell J, Marsh DJ (2009) The effect of disease-associated HRPT2 mutations on splicing. J Endocrinol 201:387–396

    Article  PubMed  CAS  Google Scholar 

  • Huang JM, Wang HM, Wang CF, Li JB, Li QL, Hou MH, Zhong JF (2010) Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol Biol Rep 37:477–483

    Article  PubMed  CAS  Google Scholar 

  • Huang JM, Liu L, Wang HM, Zhang CX, Ju ZH, Wang CF, Zhong JF (2011) Variants and gene expression of TLR2 gene and susceptibility to mastitis in cattle. Asian J Anim Vet Sci 6:51–61

    Article  CAS  Google Scholar 

  • Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kerr DE, Wellnitz O (2003) Mammary expression of new genes to combat mastitis. J Anim Sci 81(suppl 3):38–47

    PubMed  CAS  Google Scholar 

  • Kim E, Goren A, Ast G (2008) Alternative splicing and disease. RNA Biol 5:17–19

    Article  PubMed  CAS  Google Scholar 

  • Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinforma 6:62

    Article  Google Scholar 

  • Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Wang B, Zhang J, Li F, Xiang J (2010) Multiple forms of alpha-2 macroglobulin in shrimp Fenneropenaeus chinesis and their transcriptional response to WSSV or Vibrio pathogen infection. Dev Comp Immunol 34:677–684

    Article  PubMed  CAS  Google Scholar 

  • McVety S, Li L, Gordon PH, Chong G, Foulkes WD (2006) Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family. J Med Genet 43:153–156

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464:773–777

    Article  PubMed  CAS  Google Scholar 

  • Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF (2004) Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. J Allergy Clin Immunol 114:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Onara DF, Forlenza M, Gonzalez SF, Rakus KŁ, Pilarczyk A, Irnazarow I, Wiegertjes GF (2008) Differential transcription of multiple forms of alpha-2-macroglobulin in carp (Cyprinus carpio) infected with parasites. Dev Comp Immunol 32:339–347

    Article  PubMed  CAS  Google Scholar 

  • Orengo JP, Cooper TA (2007) Alternative splicing in disease. Adv Exp Med Biol 623:212–223

    Article  PubMed  Google Scholar 

  • Reed R (1996) Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev 6:215–220

    Article  PubMed  CAS  Google Scholar 

  • Seegers H, Fourichon C, Beaudeau F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 34:475–491

    Article  PubMed  Google Scholar 

  • Solis AS, Peng R, Crawford JB, Phillips JA 3rd, Patton JG (2008) Growth hormone deficiency and splicing fidelity: two serine/arginine-rich proteins, ASF/SF2 and SC35, act antagonistically. J Biol Chem 283:23619–23626

    Article  PubMed  CAS  Google Scholar 

  • Tazi J, Bakkour N, Stamm S (2009) Alternative splicing and disease. Biochim Biophys Acta 1792:14–26

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Chen IH, Xiong Z, Yan Y, Wang H, Yang X (2006) Model of stimulation-responsive splicing and strategies in identification of immunogenic isoforms of tumor antigens and autoantigens. Clin Immunol 121:121–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 31000543), the Major Project of National Transgene in China (2011ZX08007-001), the Support Program of the Ministry of Science and Technology, P. R. China (2011BAD19B02 and 2011BAD19B04), the Program of National Cow Industrial Technology System (CARS-37), and the Project of Agricultural Fine Breed from the Department of Science and Technology of Shandong Province (2010LZ10-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinming Huang, Jinduo Yuan or Jifeng Zhong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Huang, J., Zhao, L. et al. The exon 29 c.3535A>T in the alpha-2-macroglobulin gene causing aberrant splice variants is associated with mastitis in dairy cattle. Immunogenetics 64, 807–816 (2012). https://doi.org/10.1007/s00251-012-0639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0639-8

Keywords

Navigation