Skip to main content
Log in

Diversification of porcine MHC class II genes: evidence for selective advantage

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal S, Khan F, Bharadwaj U (2007) Human genetic variation studies and HLA class II loci. Int J Immunogenet 34:247–252, doi:doi:10.1111/j.1744-313X.2007.00683.x

    Article  PubMed  CAS  Google Scholar 

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic animal. Proc Natl Acad Sci U S A 101:3490–3494, doi:doi:10.1073/pnas.0306582101

    Article  PubMed  CAS  Google Scholar 

  • Aguilar A, Smith TB, Wayne RK (2005) A comparison of variation between a MHC pseudogene and microsatellite loci of the little greenbul (Andropadus virens). BMC Evol Biol 5:47, doi:10.1186/1471-2148-5-47

    Article  PubMed  CAS  Google Scholar 

  • Albert ED, Balner H, Cohen N, Collins NH, David CS, Dorf ME, Duncan WR, Geczy AF, Gotze D, Grosse-Wilde H, Gunther E, Hala K, Ivanyi P, Klein J, Stark O, Streilein JW, Vriesendorp HM, de Weck AL (1977) The major histocompatibility complex system in man and animals. Springer, New York

    Google Scholar 

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC-DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249, doi:10.1111/j.1365-294X.2005.02605.x

    Article  PubMed  CAS  Google Scholar 

  • Barbosa A, Demeure O, Urien C, Milan D, Chardon P, Renard C et al (2004) A physical map of large segments of pig chromosome 7q11-q14: comparative analysis with human chromosome 6p21. Mamm Genome 15:982–995, doi:10.1007/s00335-004-3008-6

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC (1988) A hypothetical model of the foreign antigen-binding site of class-II histocompatibility molecules. Nature 332:845–850, doi:10.1038/332845a0

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33, doi:10.1038/364033a0

    Article  PubMed  CAS  Google Scholar 

  • Chardon P, Vaiman M, Kirszenbaum M, Geffrotin C, Renard C, Cohen D (1985) Restriction fragment length polymorphism of the major histocompatibility complex of the pig. Immunogenetics 21:161–171, doi:10.1007/BF00364868

    Article  PubMed  CAS  Google Scholar 

  • Chardon P, Renard C, Vaiman M (1999) The major histocompatibility complex in swine. Immunol Rev 167:179–192, doi:10.1111/j.1600-065X.1999.tb01391.x

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Xie J, Zhor Y, Li N, Chou K-Y et al (2004) Novel SLA-DR alleles of three Chinese pig strains and the related function in human T cell response. Cell Mol Immunol 1(3):212–218

    PubMed  CAS  Google Scholar 

  • Chen F, Xie J, Li N, Zhou Y, Xin L, Chou K-Y (2005) Novel SLA-DQ alleles and their recombinant molecules in xenogeneic stimulation of human T cells. Transpl Immunol 14:83–89, doi:10.1016/j.trim.2005.02.002

    Article  PubMed  CAS  Google Scholar 

  • Clarke B, Kirby DRS (1966) Maintenance of histocompatibility polymorphisms. Nature 211:999–1000, doi:10.1038/211999a0

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256(3):50, doi:10.1038/256050a0

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Fang M, Andersson L (2006) Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc R Soc Lond B Biol Sci 273:1803–1810, doi:10.1098/rspb.2006.3514

    Article  Google Scholar 

  • Figueroa F, Gunther E, Klein J (1988) MHC polymorphism pre-dating speciation. Nature 335(6187):265–267, doi:10.1038/335265a0

    Article  PubMed  CAS  Google Scholar 

  • Giuffra E, Kijas JMH, Amarger V, Carlborg O, Jeon J-T, Andersson L (2000) The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154:1785–1791

    PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A Condon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Gustafsson K, Germana S, Hirsch F, Pratt K, LeGuern C (1990) Structure of miniature swine class II DRB genes: conservation of hypervariable amino acid residues between distantly related mammalian species. Proc Natl Acad Sci U S A 87:9798–9802, doi:10.1073/pnas.87.24.9798

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten UB, Sundvall M, Erlich HA (1991) Allelic diversity is generated by intraexon sequence exchange at the DRB1 locus in primates. Proc Natl Acad Sci U S A 88:3686–3690, doi:10.1073/pnas.88.9.3686

    Article  PubMed  CAS  Google Scholar 

  • Hedrick P (2004) Foxy MHC selection story. Heredity 93:237, doi:10.1038/sj.hdy.6800539

    Article  PubMed  CAS  Google Scholar 

  • Ho C, Rochelle ES, Martens GW, Schook LB, Smith DM (2006) Characterization of swine leukocyte antigen polymorphism by sequence-based and PCR-SSP methods in Meishan pigs. Immunogenetics 58(11):873–882

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa, T., Tanioka Y., Tanigawa M., Matsumoto Y., Onodera, T., and Matsumoto Y (1998) Cloning and characterization of a new swine MHC (SLA) class II DQB allele. J Vet Med Sci 60(6):725–729

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa-Kanai T, Tanioka Y, Tanigawa M, Matsumoto Y, Ueda S, Onodera T, Matsumoto Y (2002) Differential alloreactivity at SLA-DR and -DQ matching in two-way mixed lymphocyte culture. Vet Immunol Immunopathol 85:77–84, doi:10.1016/S0165-2427(01)00416-0

    Article  PubMed  CAS  Google Scholar 

  • Hughes A (1991) Testing for interlocus genetic exchange in the MHC: a reply to Andersson and co-workers. Immunogenetics 33:243–246

    PubMed  CAS  Google Scholar 

  • Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99(4):364–373, doi:10.1038/sj.hdy.6801031

    Article  PubMed  CAS  Google Scholar 

  • Hughes A, Nei M (1992) Maintenance of MHC polymorphism. Nature 355:402, doi:10.1038/355402b0

    Article  PubMed  CAS  Google Scholar 

  • Jonsson A, Andersson L, Rask L (1989) Selection for polymorphism in the antigen recognition site of major histocompatibility complex class II molecules. Scand J Immunol 30:409–417, doi:10.1111/j.1365-3083.1989.tb02444.x

    Article  PubMed  CAS  Google Scholar 

  • Kijas JMH, Andersson L (2001) A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J Mol Evol 52:302

    PubMed  CAS  Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed  CAS  Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162, doi:10.1016/0198-8859(87)90066-8

    Article  PubMed  CAS  Google Scholar 

  • Larson G (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618, doi:10.1126/science.1106927

    Article  PubMed  CAS  Google Scholar 

  • Li W-H, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239, doi:10.1038/292237a0

    Article  PubMed  CAS  Google Scholar 

  • Maruyama T, Nei M (1981) Genetic variability maintained by mutation and overdominante selection in finite populations. Genetics 98:441

    PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215, doi:10.1093/nar/16.3.1215

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Okumura N, Kurosawa Y, Kobayashi E, Watanobe T, Ishiguro N, Yasue H, Mitsuhashi T (2001) Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in wild boars and several breeds of domesticated pigs. Anim Genet 32:139–147, doi:10.1046/j.1365-2052.2001.00757.x

    Article  PubMed  CAS  Google Scholar 

  • Randi E, Lucchini V, Hoong Diong C (1996) Evolutionary genetics of the suiformes as reconstructed using mtDNA sequencing. J Mamm Evol 3(2):163, doi:10.1007/BF01454360

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) Testing heterozygote excess and deficiency. Genetics 140(4):1413–1419

    PubMed  Google Scholar 

  • Schwensow N, Eberle M, Sommer S (2008) Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc Biol Sci 275(1634):555–564, doi:10.1098/rspb.2007.1433

    Article  PubMed  Google Scholar 

  • Shia YC, Bradshaw M, Rutherford MS, Lewin HA, Schook LB (1995) Polymerase chain reaction based genotyping for characterization of SLA-DQB and SLA-DRB alleles in domestic pigs. Anim Genet 26(2):91–100

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (2000) Balancing selection at closely linked, overdominant loci in a finite population. Genetics 154:1367–1378

    PubMed  CAS  Google Scholar 

  • Smith DM, Lunney JK, Ho C-S, Martens GW, Ando A, Lee J-H, Schook LB, Renard C, Chardon P (2005) Nomenclature for factors of the swine leukocyte antigen class II system, 2005. Tissue Antigens 66:623, doi:10.1111/j.1399-0039.2005.00492.x

    Article  PubMed  CAS  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599, doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Vaiman M, Chardon P, Rothschild MF (1998) Porcine major histocompatibility complex. Rev Sci Tech 17(1):95–107

    PubMed  CAS  Google Scholar 

  • Widera G, Flavell RA (1984) The nucleotide sequence of the murine I-E immune response gene: evidence for gene conversion events in class II genes of the major histocompatibility complex. EMBO J 3(6):1221

    PubMed  CAS  Google Scholar 

  • Wimmers K, Schellander K, Ponsuksili S (2004) BF, HP, DQB and DRB are associated with haemolytic complement activity, acute phase protein reaction and antibody response in the pig. Vet Immunol Immunopathol 99:215–228

    PubMed  CAS  Google Scholar 

  • Yang Z, Bielawski J (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503, doi:10.1016/S0169-5347(00)01994-7

    Article  PubMed  Google Scholar 

  • Yeh FC, Boyle T, Rongcai Y, Ye Z, Xin JM (1999) POPGENE, version 1.31. A Microsoft Window Based Free Ware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  • Yuhki N, Heidecker GF, O’Brien SJ (1989) Characterization of MHC cDNA clones in the domestic cat. Diversity and evolution of class I genes. J Immunol 142(10):3676–3682

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Swine Genetics International, Lieske Genetics, Birchwood Genetics Inc., United Hog Systems Inc., High Point Swine Genetics Inc., Infigen, Taiwan Livestock Research Institute, Beijing Agriculture University, United Swine Genetics, and the Omaha Zoo for providing samples. We would also like to thank Drs. D.M. Smith and C-S Ho for their critical comments and input. This work was supported in part by USDA/NRI-CSREES grant AG2001-35205-11698, USDA-ARS, and AG58-5438-2-313. E.L. was supported by the Initiative for Future Agriculture and Food Systems Grant no. 2001-52100-11527 from the USDA Cooperative State Research, Education, and Extension Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B. Schook.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Allelic frequency of ΨDRB3 alleles (DOC 57.0 KB)

Supplementary Figure 1

Neighbor-joining phylogeny of mitochondrial D-loop region. The evolutionary history was inferred using the neighbor-joining method with Kimura two-parameter rooted at the out-group. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Numbers indicate bootstrap percentages (1,000 iterations). Phylogenetic analyses were conducted in MEGA4 (DOC 8.49 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luetkemeier, E.S., Malhi, R.S., Beever, J.E. et al. Diversification of porcine MHC class II genes: evidence for selective advantage. Immunogenetics 61, 119–129 (2009). https://doi.org/10.1007/s00251-008-0348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0348-5

Keywords

Navigation