Advertisement

Immunogenetics

, Volume 61, Issue 2, pp 111–118 | Cite as

High levels of genetic variation at MHC class II DBB loci in the tammar wallaby (Macropus eugenii)

  • Yuanyuan Cheng
  • Hannah V. Siddle
  • Stephan Beck
  • Mark D. B. Eldridge
  • Katherine BelovEmail author
Original Paper

Abstract

High levels of MHC diversity are crucial for immunological fitness of populations, with island populations particularly susceptible to loss of genetic diversity. In this study, the level of MHC class II DBB diversity was examined in tammar wallabies (Macropus eugenii) from Kangaroo Island by genotyping class II-linked microsatellite loci and sequencing of DBB genes. Here we show that the tammar wallaby has at least four expressed MHC class II DBB loci and extensive genetic variation in the peptide-binding region of the DBB genes. These results contradict early studies which suggested that wallabies lacked MHC class II diversity and demonstrate that, in spite of the long-term isolation on an offshore island, this population of wallabies has a high level of DBB diversity.

Keywords

Marsupial MHC Class II Tammar wallaby MHC-linked microsatellite Genetic variation 

Notes

Acknowledgements

The project was funded by an Australian Research Council Discovery Grant to KB, ME, and SB. We thank Cathy Herbert from the University of Sydney for providing wallaby blood samples and Matthew Wakefield from the Walter and Eliza Hall Institute for assistance with developing microsatellite primers. Hannah Siddle is funded by a University of Sydney Postgraduate Award. SB was funded by the Wellcome Trust.

References

  1. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494 doi: 10.1073/pnas.0306582101 PubMedCrossRefGoogle Scholar
  2. Beitz E (2000) TEXshade: shading and labeling multiple sequence alignments using LATEX2e. Bioinformatics 16:135–139 doi: 10.1093/bioinformatics/16.2.135 PubMedCrossRefGoogle Scholar
  3. Belov K, Lam MKP, Colgan DJ (2004) Marsupial MHC class II beta genes are not orthologous to the eutherian beta gene families. J Hered 95:338–345 doi: 10.1093/jhered/esh049 PubMedCrossRefGoogle Scholar
  4. Belov K, Deakin JE, Papenfuss AT, Baker ML, Melman SD, Siddle HV, Gouin N, Goode DL, Sargeant TJ, Robinson MD, Wakefield MJ, Mahony S, Cross JGR, Benos PV, Samollow PB, Speed TP, Graves JAM, Miller RD (2006) Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biol 4:e46 doi: 10.1371/journal.pbio.0040046 PubMedCrossRefGoogle Scholar
  5. Bondinas GP, Moustakas AK, Papadopoulos GK (2007) The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 59:539–553 doi: 10.1007/s00251-007-0224-8 PubMedCrossRefGoogle Scholar
  6. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39 doi: 10.1038/364033a0 PubMedCrossRefGoogle Scholar
  7. Browning TL, Belov K, Miller RD, Eldridge MDB (2004) Molecular cloning and characterization of the polymorphic MHC class II DBB from the tammar wallaby (Macropus eugenii). Immunogenetics 55:791–795 doi: 10.1007/s00251-004-0644-7 PubMedCrossRefGoogle Scholar
  8. Cooper DW, McKenzie LM (1997) Genetics of tammar wallabies. In: Saunders N, Hinds L (eds) Marsupial biology: recent research, new perspectives. UNSW, Sydney, AustraliaGoogle Scholar
  9. de Groot N, Doxiadis GGM, de Vos-Rouweler AJM, de Groot NG, Verschoor EJ, Bontrop RE (2008) Comparative genetics of a highly divergent DRB microsatellite in different macaque species. Immunogenetics: open access at Springerlink.comGoogle Scholar
  10. Doxiadis GGM, de Groot N, Claas FHJ, Doxiadis IIN, van Rood JJ, Bontrop RE (2007) A highly divergent microsatellite facilitating fast and accurate DRB haplotyping in humans and rhesus macaques. Proc Natl Acad Sci USA 104:8907–8912 doi: 10.1073/pnas.0702964104 PubMedCrossRefGoogle Scholar
  11. Edwards SV, Potts WK (1996) Polymorphism of genes in the major histocompatibility complex: implications for conservation genetics of vertebrates. In: Smith TB, Wayne RK (eds) Molecular genetic approaches in conservation. Oxford University Press, Oxford, UKGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J Org Evolution 39:783–791 doi: 10.2307/2408678 Google Scholar
  13. Frank SA (2002) Immunology and evolution of infectious disease. Princeton University Press, Princeton, USAGoogle Scholar
  14. George GG, Brown PR (1992) Conservation management of small populations. In: Kennedy M (ed) Australasian marsupials and monotremes: an action plan for their conservation. International Union for Conservation of Nature, Gland, SwitzerlandGoogle Scholar
  15. Hall T (1999) Bioedit: a user friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Holland OJ, Cowan PE, Gleeson DM, Chamley LW (2008) Novel alleles in classical major histocompatibility complex class II loci of the brushtail possum (Trichosurus vulpecula). Immunogenetics 60:449–460 doi: 10.1007/s00251-008-0300-8 PubMedCrossRefGoogle Scholar
  17. Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York, USAGoogle Scholar
  18. Janeway CA, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease. Garland, New York, USAGoogle Scholar
  19. Kirsch JAW, Lapointe F-J, Springer MS (1997) DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280 doi: 10.1071/ZO96030 CrossRefGoogle Scholar
  20. Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304 doi: 10.1146/annurev.genet.41.110306.130137 PubMedCrossRefGoogle Scholar
  21. McKenzie LM, Cooper DW (1994) Low MHC class II variability in a marsupial. Reprod Fertil Dev 6:721–726 doi: 10.1071/RD9940721 PubMedCrossRefGoogle Scholar
  22. Nei M, Kumar S (2000) Synonymous and nonsynonymous nucleotide substitutions. In: Molecular evolution and phylogenetics. Oxford University Press, New York, USAGoogle Scholar
  23. O'Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Wienberg J, Stanyon R, Copeland NG, Jenkins NA, Womack JE, Graves JAM (1999) The promise of comparative genomics in mammals. Science 286:458–481 doi: 10.1126/science.286.5439.458 PubMedCrossRefGoogle Scholar
  24. Pieters J (2000) MHC class II-restricted antigen processing and presentation. Adv Immunol 75:159–208 doi: 10.1016/S0065-2776(00)75004-8 PubMedCrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. Santucci F, Ibrahim KM, Bruzzone A, Hewit GM (2007) Selection on MHC-linked microsatellite loci in sheep populations. Heredity 99:340–348 doi: 10.1038/sj.hdy.6801006 PubMedCrossRefGoogle Scholar
  27. Schable NA, Fischer RU, Glenn TC (2002) Tetranucleotide microsatellite DNA loci from the dollar sunfish (Lepomis marginatus). Mol Ecol Notes 2:509–511 doi: 10.1046/j.1471-8286.2002.00296.x CrossRefGoogle Scholar
  28. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus. Nucleic Acids Res 18:6097–6100 doi: 10.1093/nar/18.20.6097 PubMedCrossRefGoogle Scholar
  29. Schneider S, Vincek V, Tichy H, Figueroa F, Klein J (1991) MHC class II genes of a marsupial, the red-necked wallaby (Macropus rufogriseus): identification of new gene families. Mol Biol Evol 8:753–766PubMedGoogle Scholar
  30. Schwaiger FW, Buitkamp J, Weyers E, Epplen JT (1993) Typing of artiodactyl Mhc-Drb genes with the help of intronic simple repeated DNA-sequences. Mol Ecol 2:55–59 doi: 10.1111/j.1365-294X.1993.tb00099.x PubMedCrossRefGoogle Scholar
  31. Shiina T, Tamiya G, Oka A, Takishima N, Yamagata T, Kikkawa E, Iwata K, Tomizawa M, Okuaki N, Kuwano Y, Watanabe K, Fukuzumi Y, Itakura S, Sugawara C, Ono A, Yamazaki M, Tashiro H, Ando A, Ikemura T, Soeda E, Kimura M, Bahram S, Inoko H (1999) Molecular dynamics of MHC genesis unraveled by sequence analysis of the 1,796,938-bp HLA class I region. Proc Natl Acad Sci USA 96:13282–13287 doi: 10.1073/pnas.96.23.13282 PubMedCrossRefGoogle Scholar
  32. Siddle HV, Sanderson C, Belov K (2007) Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59:753–760 doi: 10.1007/s00251-007-0238-2 PubMedCrossRefGoogle Scholar
  33. Stone WH, Bruun DA, Fuqua C, Glass LC, Reeves A, Holste S, Figueroa F (1999) Identification and sequence analysis of an Mhc class II B gene in a marsupial (Monodelphis domestica). Immunogenetics 49:461–463 doi: 10.1007/s002510050520 PubMedCrossRefGoogle Scholar
  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. doi:10.1093/molbev/msm092Google Scholar
  35. Taylor AC, Cooper DW (1998) A set of tammar wallaby (Macropus eugenii) microsatellites tested for genetic linkage. Mol Ecol 7:925–931 doi: 10.1111/j.1365-294X.1998.00368.x PubMedCrossRefGoogle Scholar
  36. Taylor AC, Cowan PE, Fricke BL, Geddes S, Hansen BD, Lam M, Cooper DW (2004) High microsatellite diversity and differential structuring among populations of the introduced common brushtail possum, Trichosurus vulpecula, in New Zealand. Genet Res 83:101–111 doi: 10.1017/S001667230400672X PubMedCrossRefGoogle Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  38. Tyndale-Biscoe H (2005a) Consummate kangaroos. In: Life of marsupials. CSIRO, Collingwood, AustraliaGoogle Scholar
  39. Tyndale-Biscoe H (2005b) Life in the trees: koala, greater glider and possum. In: Life of marsupials. CSIRO, Collingwood, AustraliaGoogle Scholar
  40. Wakefield MJ, Graves JAM (2003) The kangaroo genome: leaps and bounds in comparative genomics. EMBO Rep 4:143–147 doi: 10.1038/sj.embor.embor739 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yuanyuan Cheng
    • 1
  • Hannah V. Siddle
    • 1
  • Stephan Beck
    • 2
  • Mark D. B. Eldridge
    • 3
  • Katherine Belov
    • 1
    Email author
  1. 1.Faculty of Veterinary Science, RMC Gunn B19The University of SydneySydneyAustralia
  2. 2.UCL Cancer InstituteUniversity College LondonLondonUK
  3. 3.Australian MuseumSydneyAustralia

Personalised recommendations