Immunogenetics

, Volume 60, Issue 10, pp 585–598 | Cite as

Polymorphism, haplotype composition, and selection in the Mhc-DRB of wild baboons

  • Elise Huchard
  • Mylene Weill
  • Guy Cowlishaw
  • Michel Raymond
  • Leslie A. Knapp
Original Paper

Abstract

General patterns of organization in the major histocompatibility complex (MHC) have been successfully explained by the model of birth-and-death evolution, but understanding why certain MHC genes are maintained together into specific haplotypes remains challenging. The haplotype configurations of the functionally important class II DR region have been described in few primates and display important interspecific variability with respect to the extent of allelic variation, the number of loci and/or combinations of loci present. Understanding the evolutionary mechanisms driving such variation is conditional upon characterizing haplotypes in new species and identifying the selective pressures acting on haplotypes. This study explores the variability of haplotype configurations in the Mhc-DRB region (exon 2) for the first time in wild non-human primates, chacma baboons (Papio ursinus). Paur-DRB haplotypes were characterized through segregation studies and linkage disequilibrium. 23 Paur-DRB sequences and 15 haplotype configurations were identified in 199 animals. The Paur-DRB exon 2 is shown to be subjected to intense positive selection and frequent recombination. An approach recently developed for human vaccine studies was used to classify Paur-DRB sequences into supertypes, based on the physico-chemical properties of amino acids that are positively selected, thus most probably involved in antigen recognition. Sequences grouped into the same supertype (thus presumably sharing antigen-binding affinities) are non-randomly distributed within haplotypes, leading to an increased individual diversity of supertypes. Our results suggest that selection favoring haplotypes with complementary sets of DRB supertypes shapes functionally tuned haplotypes in this natural baboon population.

Keywords

Major histocompatibility complex Primates Haplotypes Polymorphism Papio ursinus 

References

  1. Alper CA, Larsen CE, Dubey DP, Awdeh ZL, Fici DA, Yunis EJ (2006) The haplotype structure of the human major histocompatibility complex. Hum Immunol 67:73–84 doi:10.1016/j.humimm.2005.11.006 PubMedCrossRefGoogle Scholar
  2. Anisimova M, Nielsen R, Yang ZH (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedGoogle Scholar
  3. Apanius V, Penn D, Slev P, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224PubMedGoogle Scholar
  4. Bodmer WF (1972) Evolutionary significance of the HL-A system. Nature 237:139–183 doi:10.1038/237139a0 PubMedCrossRefGoogle Scholar
  5. Bontrop RE, Otting N, de Groot NG, Doxiadis GGM (1999) Major histocompatibility complex class II polymorphisms in primates. Immunol Rev 167:339–350 doi:10.1111/j.1600-065X.1999.tb01403.x PubMedCrossRefGoogle Scholar
  6. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39 doi:10.1038/364033a0 PubMedCrossRefGoogle Scholar
  7. Consuegra S, Megens HJ, Schaschl H, Leon K, Stet RJM, Jordan WC (2005) Rapid evolution of the MH class I locus results in different allelic compositions in recently diverged populations of Atlantic salmon. Mol Biol Evol 22:1095–1106 doi:10.1093/molbev/msi096 PubMedCrossRefGoogle Scholar
  8. Cowlishaw G (1999) Ecological and social determinants of spacing behaviour in desert baboon groups. Behav Ecol Sociobiol 45:67–77 doi:10.1007/s002650050540 CrossRefGoogle Scholar
  9. de Groot N, Doxiadis GG, de Groot NG, Otting N, Heijmans C, Rouweler AJM et al (2004) Genetic makeup of the DR regions in rhesus macaques: gene content, transripts, and pseudogenes. J Immunol 172:6152–6157PubMedGoogle Scholar
  10. Delguercio MF, Sidney J, Hermanson G, Perez C, Grey HM, Kubo RT et al (1995) Binding of a peptide antigen to multiple Hla alleles allows definition of an A2-like supertype. J Immunol 154:685–693Google Scholar
  11. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52 doi:10.1038/256050a0 PubMedCrossRefGoogle Scholar
  12. Doxiadis GGM, Otting N, de Groot N, Noort MC, Bontrop RE (2000) Unprecedented poluymorphism of Mhc-DRB region configurations in rhesus macaques. J Immunol 164:3193–3199PubMedGoogle Scholar
  13. Doxiadis GGM, Otting N, de Groot N, Bontrop RE (2001) Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunol Rev 183:77–85 doi:10.1034/j.1600-065x.2001.1830106.x CrossRefGoogle Scholar
  14. Doxiadis GGM, Otting N, de Groot NG, de Groot N, Rouweler AJM, Noort R et al (2003) Evolutionary stability of MHC class II haplotypes in diverse rhesus macaque populations. Immunogenetics 55:540–551 doi:10.1007/s00251-003-0590-9 PubMedCrossRefGoogle Scholar
  15. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095PubMedGoogle Scholar
  16. Doytchinova IA, Guan PP, Flower DR (2004) Identifiying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323PubMedGoogle Scholar
  17. Gu X, Nei M (1999) Locus specificity of polymorphic alleles and evolution by a birth-and-death process in mammalian MHC genes. Mol Biol Evol 16:147–156PubMedGoogle Scholar
  18. Hedrick PW, Kim KJ (2000) Genetics of the complex polymorphisms: parasites and maintenance of the major histocompatibility complex variation. In: Singh RS, Krimbas CB (eds) Evolutionary genetics: from molecules to morphology. Cambridge University Press, Cambridge, pp 204–234Google Scholar
  19. Huchard E, Cowlishaw G, Raymond M, Weill M, Knapp LA (2006) Molecular study of Mhc-DRB in wild chacma baboons reveals high variability and evidence for trans-species inheritance. Immunogenetics 58:805–816 doi:10.1007/s00251-006-0156-8 PubMedCrossRefGoogle Scholar
  20. Hudson RR (2001) Two-locus sampling distributions and their application. Genetics 159:1805–1817PubMedGoogle Scholar
  21. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–432 doi:10.1146/annurev.genet.32.1.415 PubMedCrossRefGoogle Scholar
  22. Jeffery KJM, Bangham CRM (2000) Do infectious diseases drive MHC diversity? Microbes Infect 2:1335–1341 doi:10.1016/S1286-4579(00)01287-9 PubMedCrossRefGoogle Scholar
  23. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  24. Khazand M, Peiberg C, Nagy M, Sauermann U (1999) Mhc-DQ-DRB haplotype analysis in the rhesus macaque: evidence for a number of different haplotypes displaying a low allelic polymorphism. Tissue Antigens 54:615–624 doi:10.1034/j.1399-0039.1999.540612.x PubMedCrossRefGoogle Scholar
  25. Knapp LA, Cadavid LF, Eberle ME, Knechtle SJ, Bontrop RE, Watkins DI (1997) Identification of new Mamu-DRB alleles using DGGE and direct sequencing. Immunogenetics 45:171–179 doi:10.1007/s002510050186 PubMedCrossRefGoogle Scholar
  26. Kumar S, Koichiro T, Jakobsen IB Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics Application Note 17:1244–1245Google Scholar
  27. Kundu S, Faulkes CG (2004) Patterns of MHC selection in African mole-rats, family Bathyergidae: the effects of sociality and habitat. Proc R Soc Lond B Biol Sci 271:273–278 doi:10.1098/rspb.2003.2584 CrossRefGoogle Scholar
  28. Lund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P et al (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55:797–810 doi:10.1007/s00251-004-0647-4 PubMedCrossRefGoogle Scholar
  29. Madden DR (1995) The 3-dimensional structure of peptide-Mhc complexes. Annu Rev Immunol 13:587–622 doi:10.1146/annurev.iy.13.040195.003103 PubMedCrossRefGoogle Scholar
  30. Marsh SGE (2005) Nomenclature for factors of the HLA system, update June 2005. Tissue Antigens 66:338–340 doi:10.1111/j.1399-0039.2005.00479.x PubMedCrossRefGoogle Scholar
  31. McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241PubMedGoogle Scholar
  32. Myers RM, Fischer SG, Lerman LS, Maniatis T (1987) Nearly all single base substitutions in DNA fragments joined to GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145 doi:10.1093/nar/13.9.3131 CrossRefGoogle Scholar
  33. Nei M, Gojobori T (1986) Simple methods for estimating the number of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  34. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806 doi:10.1073/pnas.94.15.7799 PubMedCrossRefGoogle Scholar
  35. Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) Eleventh histocompatibility workshop and conference. Oxford University Press, Oxford, England, pp 27–38Google Scholar
  36. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  37. Nuismer SL, Otto SP (2004) Host–parasite interactions and the evolution of ploidy. Proc Natl Acad Sci U S A 101:11036–11039 doi:10.1073/pnas.0403151101 PubMedCrossRefGoogle Scholar
  38. Otting N, de Groot NG, Noort MC, Doxiadis GGM, Bontrop RE (2000) Allelic diversity of Mhc-DRB alleles in rhesus macaques. Tissue Antigens 56:58–68 doi:10.1034/j.1399-0039.2000.560108.x PubMedCrossRefGoogle Scholar
  39. Piontkivska H, Nei M (2003) Birth-and-death evolution in primate MHC Class I genes: divergence time estimates. Mol Biol Evol 20:601–609 doi:10.1093/molbev/msg064 PubMedCrossRefGoogle Scholar
  40. Richman AD, Herrera LG, Nash D (2003a) Evolution of MHC class II E beta diversity within the genus Peromyscus. Genetics 164:289–297PubMedCrossRefGoogle Scholar
  41. Richman AD, Herrera LG, Nash D, Schierup MH (2003b) Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyseus maniculatus. Genet Res 82:89–99 doi:10.1017/S0016672303006347 PubMedCrossRefGoogle Scholar
  42. Robinson J, Waller MJ, Parham P, de Groot N, Bontrop RE, Kennedy LJ et al (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314 doi:10.1093/nar/gkg070 PubMedCrossRefGoogle Scholar
  43. Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491 doi:10.1021/jm9700575 PubMedCrossRefGoogle Scholar
  44. Schad J, Sommer S, Ganzhorn JU (2004) MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conserv Genet 5:299–309 doi:10.1023/B:COGE.0000031137.50239.d3 CrossRefGoogle Scholar
  45. Schaschl H, Suchentrunk F, Hammer S, Goodman SJ (2005) Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.). Immunogenetics 57:108–115 doi:10.1007/s00251-005-0784-4 PubMedCrossRefGoogle Scholar
  46. Schwensow N, Fietz J, Dausmann KH, Sommer S (2007) Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity 99:265–277 doi:10.1038/sj.hdy.6800993 PubMedCrossRefGoogle Scholar
  47. Sette A, Sidney J (1998) HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 10:478–482 doi:10.1016/S0952-7915(98)80124-6 PubMedCrossRefGoogle Scholar
  48. Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212 doi:10.1007/s002510050594 PubMedCrossRefGoogle Scholar
  49. Sette A, Livingston B, McKinney D, Appella E, Fikes J, Sidney J et al (2001) The development of multi-epitope vaccines: Epitope identification, vaccine design and clinical evaluation. Biologicals 29:271–276 doi:10.1006/biol.2001.0297 PubMedCrossRefGoogle Scholar
  50. Sette A, Newman M, Livingston B, McKinney D, Sidney J, Ishioka G et al (2002) Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. Tissue Antigens 59:443–451 doi:10.1034/j.1399-0039.2002.590601.x PubMedCrossRefGoogle Scholar
  51. Seutin G, White BN, Boag PT (1990) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90 doi:10.1139/z91-013 CrossRefGoogle Scholar
  52. Sidney J, Howard MG, Kubo RT, Sette A (1996) Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today 17:261–266 doi:10.1016/0167-5699(96)80542-1 PubMedCrossRefGoogle Scholar
  53. Slierendregt BL, Otting N, van Besouw N, Jonker M, Bontrop RE (1994) Expansion and contraction of rhesus macaque DRB regions by duplication and deletion. J Immunol 152:2298–2307PubMedGoogle Scholar
  54. Slierendregt BL, van Noort JT, Bakas RM, Otting N, Jonker M, Bontrop RE (1992) Evolutionary stability of transpecies major histocompatibility complex class II DRB lineages in humans and rhesus monkeys. Hum Immunol 35:29–39 doi:10.1016/0198-8859(92)90092-2 PubMedCrossRefGoogle Scholar
  55. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S et al (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160:3363–3373PubMedGoogle Scholar
  56. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL et al (1994) Crystal-structure of the human class-Ii Mhc protein Hla-Dr1 complexed with an influenza-virus peptide. Nature 368:215–221 doi:10.1038/368215a0 PubMedCrossRefGoogle Scholar
  57. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208 doi:10.1093/bioinformatics/18.1.207 PubMedCrossRefGoogle Scholar
  58. Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E et al (2003) Advantage of rare HLA supertype in HIV disease progression. Nat Med 9:928–935 doi:10.1038/nm893 PubMedCrossRefGoogle Scholar
  59. Wong WSW, Yang ZH, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051 doi:10.1534/genetics.104.031153 PubMedCrossRefGoogle Scholar
  60. Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  61. Yang ZH, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503 doi:10.1016/S0169-5347(00)01994-7 PubMedCrossRefGoogle Scholar
  62. Yang ZH, Nielsen R, Goldman N, Pedersen AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elise Huchard
    • 1
    • 2
  • Mylene Weill
    • 1
  • Guy Cowlishaw
    • 2
  • Michel Raymond
    • 1
  • Leslie A. Knapp
    • 3
  1. 1.CNRS, Institut des Sciences de l’EvolutionUniversité Montpellier 2Montpellier Cedex 05France
  2. 2.Institute of ZoologyZoological Society of LondonLondonUK
  3. 3.Department of Biological AnthropologyUniversity of CambridgeCambridgeUK

Personalised recommendations