Skip to main content

Advertisement

Log in

The peptide-binding specificity of HLA-A*3001 demonstrates membership of the HLA-A3 supertype

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Human leukocyte antigen class I (HLA-I) molecules are highly polymorphic peptide receptors, which select and present endogenously derived peptide epitopes to CD8+ cytotoxic T cells (CTL). The specificity of the HLA-I system is an important component of the overall specificity of the CTL immune system. Unfortunately, the large and rapidly increasing number of known HLA-I molecules seriously complicates a comprehensive analysis of the specificities of the entire HLA-I system (as of June 2008, the international HLA registry holds >1,650 unique HLA-I protein entries). In an attempt to reduce this complexity, it has been suggested to cluster the different HLA-I molecules into “supertypes” of largely overlapping peptide-binding specificities. Obviously, the HLA supertype concept is only valuable if membership can be assigned with reasonable accuracy. The supertype assignment of HLA-A*3001, a common HLA haplotype in populations of African descent, has variously been assigned to the A1, A3, or A24 supertypes. Using a biochemical HLA-A*3001 binding assay, and a large panel of nonamer peptides and peptide libraries, we here demonstrate that the specificity of HLA-A*3001 most closely resembles that of the HLA-A3 supertype. We discuss approaches to supertype assignment and underscore the importance of experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PSCPL:

positional scanning combinatorial peptide libraries

AP:

anchor position

RB:

relative binding

References

  • Buchsbaum S, Barnea E, Dassau L, Beer I, Milner E, Admon A (2003) Large-scale analysis of HLA peptides presented by HLA-Cw4. Immunogenetics 55:172–176

    Article  PubMed  CAS  Google Scholar 

  • Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384

    Article  PubMed  CAS  Google Scholar 

  • Christensen JK, Lamberth K, Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Buus S, Brunak S, Lund O (2003) Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach. Neural Comput 15:2931–2942

    Article  PubMed  Google Scholar 

  • del Guercio MF, Sidney J, Hermanson G, Perez C, Grey HM, Kubo RT, Sette A (1995) Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 154:685–693

    PubMed  CAS  Google Scholar 

  • Dumrese T, Stevanovic S, Seeger FH, Yamada N, Ishikawa Y, Tokunaga K, Takiguchi M, Rammensee H (1998) HLA-A26 subtype A pockets accommodate acidic N-termini of ligands. Immunogenetics 48:350–353

    Article  PubMed  CAS  Google Scholar 

  • Falk K, Rotzschke O, Takiguchi M, Gnau V, Stevanovic S, Jung G, Rammensee HG (1995a) Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics 41:162–164

    Article  PubMed  CAS  Google Scholar 

  • Falk K, Rotzschke O, Takiguchi M, Gnau V, Stevanovic S, Jung G, Rammensee HG (1995b) Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics 41:165–168

    Article  PubMed  CAS  Google Scholar 

  • Ferre H, Ruffet E, Blicher T, Sylvester-Hvid C, Nielsen LL, Hobley TJ, Thomas OR, Buus S (2003) Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: a novel strategy exploiting disulfide assisted protein folding. Protein Sci 12:551–559

    Article  PubMed  CAS  Google Scholar 

  • Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1:409–417

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Trapani JA, Allopenna J, Dupont B, Yang SY (1989) Molecular analysis of the serologically defined HLA-Aw19 antigens. A genetically distinct family of HLA-A antigens comprising A29, A31, A32, and Aw33, but probably not A30. J Immunol 143:3371–3378

    PubMed  CAS  Google Scholar 

  • Krausa P, Munz C, Keilholz W, Stevanovic S, Jones EY, Browning M, Bunce M, Rammensee HG, McMichael A (2000) Definition of peptide binding motifs amongst the HLA-A*30 allelic group. Tissue Antigens 56:10–18

    Article  PubMed  CAS  Google Scholar 

  • Lauemoller SL, Holm A, Hilden J, Brunak S, Holst Nissen M, Stryhn A, Ostergaard Pedersen L, Buus S (2001) Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations. Tissue Antigens 57:405–414

    Article  PubMed  CAS  Google Scholar 

  • Lund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, Sylvester-Hvid C, Lamberth K, Roder G, Justesen S, Buus S, Brunak S (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55:797–810

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus S (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2:e796

    Article  PubMed  CAS  Google Scholar 

  • Pedersen LO, Hansen AS, Olsen AC, Gerwien J, Nissen MH, Buus S (1994) The interaction between beta 2-microglobulin (beta 2m) and purified class-I major histocompatibility (MHC) antigen. Scand J Immunol 39:64–72

    Article  PubMed  CAS  Google Scholar 

  • Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, Nemazee D, Ponomarenko JV, Sathiamurthy M, Schoenberger S, Stewart S, Surko P, Way S, Wilson S, Sette A (2005a) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3:e91

    Article  PubMed  CAS  Google Scholar 

  • Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, Nemazee D, Ponomarenko JV, Sathiamurthy M, Schoenberger SP, Stewart S, Surko P, Way S, Wilson S, Sette A (2005b) The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57:326–336

    Article  PubMed  CAS  Google Scholar 

  • Press KC (1989) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  PubMed  CAS  Google Scholar 

  • Seeger FH, Arnold D, Dumrese T, de la Salle H, Fricker D, Schild H, Rammensee HG, Stevanovic S (1998) The HLA-B* 1516 motif demonstrates HLA-B-specific P2 pocket characteristics. Immunogenetics 48:156–160

    Article  PubMed  CAS  Google Scholar 

  • Seeger FH, Schirle M, Gatfield J, Arnold D, Keilholz W, Nickolaus P, Rammensee HG, Stevanovic S (1999) The HLA-A*6601 peptide motif: prediction by pocket structure and verification by peptide analysis. Immunogenetics 49:571–576

    Article  PubMed  CAS  Google Scholar 

  • Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212

    Article  PubMed  CAS  Google Scholar 

  • Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, Melief CJ, Oseroff C, Yuan L, Ruppert J, Sidney J, del Guercio MF, Southwood S, Kubo RT, Chesnut RW, Grey HM, Chisari FV (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586–5592

    PubMed  CAS  Google Scholar 

  • Sidney J, del Guercio MF, Southwood S, Engelhard VH, Appella E, Rammensee HG, Falk K, Rotzschke O, Takiguchi M, Kubo RT et al (1995) Several HLA alleles share overlapping peptide specificities. J Immunol 154:247–259

    PubMed  CAS  Google Scholar 

  • Stryhn A, Pedersen LO, Romme T, Holm CB, Holm A, Buus S (1996) Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding. Eur J Immunol 26:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Sylvester-Hvid C, Kristensen N, Blicher T, Ferre H, Lauemoller SL, Wolf XA, Lamberth K, Nissen MH, Pedersen LO, Buus S (2002) Establishment of a quantitative ELISA capable of determining peptide–MHC class I interaction. Tissue Antigens 59:251–258

    Article  PubMed  CAS  Google Scholar 

  • Sylvester-Hvid C, Nielsen M, Lamberth K, Roder G, Justesen S, Lundegaard C, Worning P, Thomadsen H, Lund O, Brunak S, Buus S (2004) SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tissue Antigens 63:395–400

    Article  PubMed  CAS  Google Scholar 

  • Wentworth PA, Sette A, Celis E, Sidney J, Southwood S, Crimi C, Stitely S, Keogh E, Wong NC, Livingston B, Alazard D, Vitiello A, Grey HM, Chisari FV, Chesnut RW, Fikes J (1996) Identification of A2-restricted hepatitis C virus-specific cytotoxic T lymphocyte epitopes from conserved regions of the viral genome. Int Immunol 8:651–659

    Article  PubMed  CAS  Google Scholar 

  • Zemmour J, Little AM, Schendel DJ, Parham P (1992) The HLA-A,B “negative” mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol 148:1941–1948

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (grant HHSN266200400025C) and from the sixth framework program of the European Commission (grants LSHB-CT-2003-503231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Lamberth.

Additional information

Note added in proof

After submission of this study, Sidney et al. have published a PSCPL analysis of HLA-A*3001 finding a similar peptide-binding motif as in this study (Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B. “Quantitative peptide-binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries.” Immunome Res. 2008 Jan 25; 4:2) and concluded in another study that the HLA-A*3001 peptide-binding repertoire overlapped the A1 and A3 supertype (Sidney J, Peters B, Frahm N, Brander C, Sette A. “HLA class I supertypes: a revised and updated classification.” BMC Immunol. 2008 Jan 22; 9:1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberth, K., Røder, G., Harndahl, M. et al. The peptide-binding specificity of HLA-A*3001 demonstrates membership of the HLA-A3 supertype. Immunogenetics 60, 633–643 (2008). https://doi.org/10.1007/s00251-008-0317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0317-z

Keywords

Navigation