Abstract
The chemoattractant neutrophil formyl peptide receptor (FPR) binds bacterial and mitochondrial N-formylated peptides, which allows the neutrophils to find the bacterial source and/or site of tissue damage. Certain inflammatory disorders may be due in part to an impaired innate immune system that does not respond to acute bacterial damage in a timely fashion. Because the human FPR is encoded by a large number of different haplotypes arising from ten single-nucleotide polymorphisms, we examined the possibility that some of these haplotypes are functionally distinct. We analyzed the response of three common FPR haplotypes to peptides from Escherichia coli, Mycobacterium avium ssp. paratuberculosis, and human mitochondria. All three haplotypes responded similarly to the E. coli and mitochondrial peptides, whereas one required a higher concentration of the M. avium peptide fMFEDAVAWF for receptor downregulation, receptor signaling, and chemotaxis. This raises the possibility of additional bacterial species differences in functional responses among FPR variants and establishes a precedent with potentially important implications for our innate immune response against bacterial infections. We also investigated whether certain FPR haplotypes are associated with rheumatoid arthritis (RA) by sequencing FPR1 from 148 Caucasian individuals. The results suggested that FPR haplotypes do not significantly contribute toward RA.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA Jr, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324
Autschbach F, Eisold S, Hinz U, Zinser S, Linnebacher M, Giese T, Loffler T, Buchler MW, Schmidt J (2005) High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut 54:944–949
Borody TJ, Leis S, Warren EF, Surace R (2002) Treatment of severe Crohn’s disease using antimycobacterial triple therapy—approaching a cure? Dig Liver Dis 34:29–38
Boulay F, Tardif M, Brouchon L, Vignais P (1990) The human N-formyl peptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G protein-coupled receptors. Biochemistry 29:11123–11133
Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533
Brunello F, Pera A, Martini S, Marino L, Astegiano M, Barletti C, Gastaldi P, Verme G, Emanuelli G (1991) Antibodies to Mycobacterium paratuberculosis in patients with Crohn’s disease. Dig Dis Sci 36:1741–1745
Carp H (1982) Mitochondrial N-formyl methionyl proteins as chemoattractants for neutrophils. J Exp Med 155:264–275
Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252:1102–1106
Croucher PJP, Mascheretti S, Hampe J, Huse K, Frenzel H, Stoll M, Lu T, Nikolaus S, Yang S-K, Krawczak M, Kim WH, Schreiber S (2003) Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet 11:6–16
Derian CK, Solomon HF, Higgins JDI, Beblavy MJ, Santulli RJ, Bridger GJ, Pike MC, Kroon DJ, Fischman AJ (1996) Selective inhibition of N-formyl peptide-induced neutrophil activation by carbamate-modified peptide analogues. Biochemistry 35:1256–1269
Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463
Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, Quertinmont E, Abramowicz M, Van Gossum A, Deviere J, Rutgeerts P (2004) Deficient host–bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53:987–992
Gewirtz AT, Vijay-Kumar M, Brant SR, Duerr RH, Nicolae DL, Cho JH (2006) Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 290:G1157–G1163
Gripentrog JM, Miettinen HM (2005) Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on β-arrestin translocation or receptor endocytosis. Cell Signal 17:1300–1311
Gripentrog JM, Jesaitis AJ, Miettinen HM (2000) A single amino acid substitution (N297A) in the conserved NPXXY sequence of the human N-formyl peptide receptor results in inhibition of desensitization and endocytosis, and a dose-dependent shift in p42/44 mitogen-activated protein kinase activation and chemotaxis. Biochem J 352:399–407
Gripentrog JM, Kantele KP, Jesaitis AJ, Miettinen HM (2003) Experimental evidence for lack of homodimerization of the G protein-coupled human N-formyl peptide receptor. J Immunol 171:3187–3193
Haier J, Nasralla M, Franco AR, Nicolson GL (1999) Detection of mycoplasmal infections in blood of patients with rheumatoid arthritis. Rheumatology (Oxford) 38:504–509
Hartt JK, Liang T, Sahagun-Ruiz A, Wang JM, Gao JL, Murphy PM (2000) The HIV-1 cell entry inhibitor T-20 potently chemoattracts neutrophils by specifically activating the N-formyl peptide receptor. Biochem Biophys Res Commun 272:699–704
Henderson B, Nair SP, Ward JM, Wilson M (2003) Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol 57:29–55
Higgins JDI, Bridger GJ, Derian CK, Beblavy MJ, Hernandez PE, Gaul FE, Abrams MJ, Pike MC, Solomon HF (1996) N-terminus urea-substituted chemotactic peptides: new potent agonists and antagonists toward the neutrophil fMLF receptor. J Med Chem 39:1013–1017
Horowitz S, Evinson B, Borer A, Horowitz J (2000) Mycoplasma fermentans in rheumatoid arthritis and other inflammatory arthritides. J Rheumatol 27:2747–2753
Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603
Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512
Jarnerot G, Rolny P, Wickbom G, Alemayehu G (1989) Antimycobacterial therapy ineffective in Crohn’s disease after a year. Lancet 1:164–165
Leong RWL, Armuzzi A, Ahmad T, Wong ML, Tse P, Jewell DP, Sung JJY (2003) NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment Pharmacol Ther 17:1465–1470
Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA (1984) Purification and identification of formyl–methionyl–leucyl–phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem 259:5430–5436
Miettinen HM, Mills JS, Gripentrog JM, Dratz EA, Granger BL, Jesaitis AJ (1997) The ligand binding site of the formyl peptide receptor maps in the transmembrane region. J Immunol 159:4045–4054
Miettinen HM, Gripentrog JM, Jesaitis AJ (1998) Chemotaxis of Chinese hamster ovary cells expressing the human neutrophil formyl peptide receptor: role of signal transduction molecules and α5β1 integrin. J Cell Sci 111:1921–1928
Mills JS (2006) Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor. Biochim Biophys Acta 1762:693–703
Mills JS (2007) Differential activation of polymorphisms of the formyl peptide receptor by formyl peptides. Biochim Biophys Acta 1772:1085–1092
Mills JS, Miettinen HM, Cummings RD, Jesaitis AJ (2000) Characterization of the binding site on the formyl peptide receptor using three receptor mutants and analogs of Met–Leu–Phe and Met–Met–Trp–Leu–Leu. J Biol Chem 275:39012–39017
Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606
Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlietinck R, Rutgeerts P, Vermeire S (2006) Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis 12:1–8
Rabiet MJ, Huet E, Boulay F (2005) Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol 35:2486–2495
Ramirez AS, Rosas A, Hernandez-Beriain JA, Orengo JC, Saavedra P, de la FC, Fernandez A, Poveda JB (2005) Relationship between rheumatoid arthritis and Mycoplasma pneumoniae: a case-control study. Rheumatology (Oxford) 44:912–914
Romero C, Hamdi A, Valentine JF, Naser SA (2005) Evaluation of surgical tissue from patients with Crohn’s disease for the presence of Mycobacterium avium subspecies paratuberculosis DNA by in situ hybridization and nested polymerase chain reaction. Inflamm Bowel Dis 11:116–125
Sahagun-Ruiz A, Colla JS, Juhn J, Gao J-L, Murphy PM, McDermott DH (2001) Contrasting evolution of the human leukocyte N-formyl peptide receptor subtypes FPR and FPRL1. Genes Immun 2:335–342
Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407
Schiffmann E, Showell HV, Corcoran BA, Ward PA, Smith E, Becker EL (1975) The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J Immunol 114:1831–1837
Schultz MG, Rieder HL, Hersh T, Riepe S (1987) Remission of Crohn’s disease with antimycobacterial chemotherapy. Lancet 2:1391–1392
Su SB, Gong WH, Gao JL, Shen WP, Grimm MC, Deng XY, Murphy PM, Oppenheim JJ, Wang JM (1999) T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor. Blood 93:3885–3892
Subramanian S, Campbell BJ, Rhodes JM (2006) Bacteria in the pathogenesis of inflammatory bowel disease. Curr Opin Inf Dis 19:475–484
Suenaga K, Yokoyama Y, Nishimori I, Sano S, Morita M, Okazaki K, Onishi S (1999) Serum antibodies to Mycobacterium paratuberculosis in patients with Crohn’s disease. Dig Dis Sci 44:1202–1207
Sun RH, Iribarren P, Zhang N, Zhou Y, Gong WH, Cho EH, Lockett S, Chertov O, Bednar F, Rogers TJ, Oppenheim JJ, Wang JM (2004) Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 173:428–436
Tosa M, Negoro K, Kinouchi Y, Abe H, Nomura E, Takagi S, Aihara H, Oomori S, Sugimura M, Takahashi K, Hiwatashi N, Takahashi S, Shimosegawa T (2006) Lack of association between IBD5 and Crohn’s disease in Japanese patients demonstrates population-specific differences in inflammatory bowel disease. Scand J Gastroenterol 41:48–53
Uthayakumar S, Granger BL (1995) Cell surface accumulation of overexpressed hamster lysosomal membrane glycoproteins. Cell Mol Biol Res 41:405–420
Walther A, Riehemann K, Gerke V (2000) A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell 5:831–840
Zhang Y, Syed R, Uygar C, Pallos D, Gorry MC, Firatli E, Cortelli JR, VanDyke TE, Hart PS, Feingold E, Hart TC (2003) Evaluation of human leukocyte N-formyl peptide receptor (FPR1) SNPs in aggressive periodontitis patients. Genes Immun 4:22–29
Acknowledgments
We thank Elena Suvorova and Bruce Granger for helpful discussions and Laura Richert and Britta Han for help in the laboratory. We thank Al Jesaitis, director of the Montana State University Blood Donor Program, for providing control blood samples. We thank Ms. Wendy McLaughlin (Bozeman Deaconess Hospital) for assistance with the RA blood samples and Jill Barker for help with statistical analysis. We also thank Laura Nelson, Dan Siemsen, and Mark Quinn for help with control blood samples. This project was funded in part by the National Institutes of Health grant R01 AI51726 (HMM), an American Heart Association Grant-in-Aid 0650153Z (HMM), and the National Institutes of Health grant R21DE16114 (JSM). The DNA sequencing was supported by National Institutes of Health grant P20 RR-016464 from the INBRE Program of the National Center for Research Resources (University of Nevada–Reno).
Author information
Authors and Affiliations
Corresponding author
Additional information
George J. Saari, Deceased.
Rights and permissions
About this article
Cite this article
Gripentrog, J.M., Mills, J.S., Saari, G.J. et al. Variable responses of formyl peptide receptor haplotypes toward bacterial peptides. Immunogenetics 60, 83–93 (2008). https://doi.org/10.1007/s00251-008-0277-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00251-008-0277-3


