Advertisement

Immunogenetics

, Volume 60, Issue 1, pp 25–36 | Cite as

A probabilistic meta-predictor for the MHC class II binding peptides

  • Oleksiy Karpenko
  • Lei Huang
  • Yang DaiEmail author
Original Paper

Abstract

Several computational methods for the prediction of major histocompatibility complex (MHC) class II binding peptides embodying different strengths and weaknesses have been developed. To provide reliable prediction, it is important to design a system that enables the integration of outcomes from various predictors. The construction of a meta-predictor of this type based on a probabilistic approach is introduced in this paper. The design permits the easy incorporation of results obtained from any number of individual predictors. It is demonstrated that this integrated method outperforms six state-of-the-art individual predictors based on computational studies using MHC class II peptides from 13 HLA alleles and three mouse MHC alleles obtained from the Immune Epitope Database and Analysis Resource. It is concluded that this integrative approach provides a clearly enhanced reliability of prediction. Moreover, this computational framework can be directly extended to MHC class I binding predictions.

Keywords

MHC class II binding Epitope prediction Meta-predictor PM predictor 

Notes

Acknowledgments

This research is supported in part by the NIH under Grant 1 R03 AI069391-01.

References

  1. Altiparmak F, Akalin A, Ferhatosmanoglu H (2006) Predicting the binding affinity of MHC class II peptides. In: Computational Systems Bioinformatics: Proceedings of the Conference CSB, pp 331–334Google Scholar
  2. Bhasin M, Raghava GP (2004) SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics 20:421–423PubMedCrossRefGoogle Scholar
  3. Bleek GMV, Nathenson SG (1991) The structure of the antigen-binding groove of major histocompatibility complex class I molecules determines specific selection of self-peptides. PNAS 88:11032–11036PubMedCrossRefGoogle Scholar
  4. Borras-Cuesta F, Golvano J, Garcia-Granero M, Sarobe P, Riezu-Boj J, Huarte E, Lasarte J (2000) Specific and general HLA-DR binding motifs: comparison of algorithms. Hum Immunol 61:266–278PubMedCrossRefGoogle Scholar
  5. Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14:121–130PubMedCrossRefGoogle Scholar
  6. Bui H-H, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton K-A, Mothé BR, Chisari FV, Watkins DI, Sette A (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304–314PubMedCrossRefGoogle Scholar
  7. Burden FR, Winkler DA (2005) Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model 23:481PubMedCrossRefGoogle Scholar
  8. Castellino F, Zhong G, Germain RN (1997) Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum Immunol 54:159–169PubMedCrossRefGoogle Scholar
  9. Chang ST, Ghosh D, Kirschner DE, Linderman JJ (2006) Peptide length-based prediction of peptide-MHC class II binding. Bioinformatics 22:2761–2767PubMedCrossRefGoogle Scholar
  10. Chang KY, Suri A, Unanue ER (2007) Predicting peptides bound to I-Ag7 class II histocompatibility molecules using a novel expectation-maximization alignment algorithm. Proteomics 7:367–377PubMedCrossRefGoogle Scholar
  11. Cui J, Han L, Lin H, Tang Z, Jiang L, Cao Z, Chen Y (2006) MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties. Immunogenetics 58:607PubMedCrossRefGoogle Scholar
  12. Cui J, Han LY, Lin HH, Zhang HL, Tang ZQ, Zheng CJ, Cao ZW, Chen YZ (2007) Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol 44:866–877PubMedCrossRefGoogle Scholar
  13. De Groot AS, Berzofsky JA (2004) From genome to vaccine—new immunoinformatics tools for vaccine design. Methods 34:425–428PubMedCrossRefGoogle Scholar
  14. De Groot AS, Sbai H, Aubin CS, McMurry J, Martin W (2002) Immuno-informatics: mining genomes for vaccine components. Immunol Cell Biol 80:255–269PubMedCrossRefGoogle Scholar
  15. Donnes P, Elofsson A (2002) Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3:25PubMedCrossRefGoogle Scholar
  16. Donnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res 34:W194–W197PubMedCrossRefGoogle Scholar
  17. Doytchinova IA, Flower DR (2001) Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J Med Chem 44:3572–3581PubMedCrossRefGoogle Scholar
  18. Doytchinova IA, Flower DR (2003) Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Bioinformatics 19:2263–2270PubMedCrossRefGoogle Scholar
  19. Doytchinova IA, Taylor P, Flower DR (2003) Proteomics in vaccinology and immunobiology: an informatics perspective of the immunone. J Biomed Biotechnol 2003:267–290PubMedCrossRefGoogle Scholar
  20. Flower DR (2004) Vaccines in silico—the growth and power of immunoinformatics. The Biochemist 26:17–20Google Scholar
  21. Flower DR, Doytchinova IA (2002) Immunoinformatics and the prediction of immunogenicity. Appl Bioinformatics 1:167–176PubMedGoogle Scholar
  22. Flower DR, Doytchinova IA, Paine KPT, Blythe MJ, Lamponi D, Zygouri C, Guan P, McSparron H, Kirkbride H (2002) Computational vaccine design. In: Flower DR (ed) Drug design: cutting edge approaches. RSC, London, pp 136–180Google Scholar
  23. Flower DR, McSparron H, Blythe MJ, Zygouri C, Taylor D, Guan P, Wan S, Coveney PV, Walshe V, Borrow P, Doytchinova IA (2003) Computational vaccinology: quantitative approaches. Novartis Found Symp 254:102–120 discussion 120–125, 216–222, 250–252PubMedCrossRefGoogle Scholar
  24. Hattotuwagama CK, Toseland CP, Guan P, Taylor DJ, Hemsley SL, Doytchinova IA, Flower DR (2006) Toward prediction of class II mouse major histocompatibility complex peptide binding Affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. J Chem Inf Model 46:1491–1502PubMedCrossRefGoogle Scholar
  25. Hertz T, Yanover C (2006) PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions. BMC Bioinformatics 7:S3PubMedCrossRefGoogle Scholar
  26. Huang L, Karpenko O, Murugan N, Dai Y (2006) A meta-predictor for MHC class II binding peptides based on naive Bayesian approach. In: Proceedings of the 28th International Conference of IEEE Engineering in Medicine and Biology Society (EMBS)Google Scholar
  27. Huang L, Karpenko O, Murugan N, Dai Y (2007) Building a meta-predictor for MHC class II-binding peptides. In: Flower DR (ed) Immunoinformatics: predicting immunogenicity in silico. Humana, Totowa, NJ, pp 355–364Google Scholar
  28. Karpenko O, Shi J, Dai Y (2005) Prediction of MHC class II binders using the ant colony search strategy. Artif Intell Med 35:147–156PubMedCrossRefGoogle Scholar
  29. Kato R, Noguchi H, Honda H, Kobayashi T (2003) Hidden Markov model-based approach as the first screening of binding peptides that interact with MHC class II molecules. Enzyme Microb Technol 33:472–481CrossRefGoogle Scholar
  30. Liu W, Meng X, Xu Q, Flower D, Li T (2006) Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics 7:182PubMedCrossRefGoogle Scholar
  31. Mallios RR (1998) Iterative stepwise discriminant analysis: a meta-algorithm for detecting quantitative sequence motifs. J Comput Biol 5:703–711PubMedGoogle Scholar
  32. Mallios RR (2001) Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm. Bioinformatics 17:942–948PubMedCrossRefGoogle Scholar
  33. Mallios RR (2003) A consensus strategy for combining HLA-DR binding algorithms. Hum Immunol 64:852PubMedCrossRefGoogle Scholar
  34. Martin W, Sbai H, De Groot AS (2003) Bioinformatics tools for identifying class I-restricted epitopes. Methods 29:289PubMedCrossRefGoogle Scholar
  35. Max H, Halder T, Kropshofer H, Kalbus M, Muller CA, Kalbacher H (1993) Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules. Hum Immunol 38:193–200PubMedCrossRefGoogle Scholar
  36. Moise L, De Groot AS (2006) Putting immunoinformatics to the test. Nat Biotechnol 24:791PubMedCrossRefGoogle Scholar
  37. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui H-H, Grey H, Sette A (2006) A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nat Biotechnol 24:817PubMedCrossRefGoogle Scholar
  38. Murugan N, Dai Y (2005) Prediction of MHC class II binding peptides based on an iterative learning model. Immunome Res 1:6PubMedCrossRefGoogle Scholar
  39. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017PubMedCrossRefGoogle Scholar
  40. Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S, Lund O (2004) Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20:1388–1397PubMedCrossRefGoogle Scholar
  41. Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8:238PubMedCrossRefGoogle Scholar
  42. Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, Kobayashi T (2002) Hidden Markov model-based prediction of antigenic peptides that interact with MHC Class II molecules. J Biosci Bioeng 94:264–270PubMedCrossRefGoogle Scholar
  43. Nussbaum AK, Kuttler C, Tenzer S, Schild H (2003) Using the World Wide Web for predicting CTL epitopes. Curr Opin Immunol 15:69PubMedCrossRefGoogle Scholar
  44. Parham P (2005) The immune system. Garland Science, New York, NYGoogle Scholar
  45. Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132PubMedCrossRefGoogle Scholar
  46. Peters B, Sidney J, Bourne P, Bui H-H, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, Nemazee D, Ponomarenko JV, Sathiamurthy M, Schoenberger SP, Stewart S, Surko P, Way S, Wilson S, Sette A (2005) The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57:326PubMedCrossRefGoogle Scholar
  47. Peters B, Bui H-H, Frankild S, Nielsen M, Lundegaard C, Kostem E, Basch D, Lamberth K, Harndahl M, Fleri W, Wilson SS, Sidney J, Lund O, Buus S, Sette A (2006) A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2:e65PubMedCrossRefGoogle Scholar
  48. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219PubMedCrossRefGoogle Scholar
  49. Reche PA, Glutting JP, Reinherz EL (2002) Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 63:701–709PubMedCrossRefGoogle Scholar
  50. Reche PA, Glutting JP, Zhang H, Reinherz EL (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56:405–419PubMedCrossRefGoogle Scholar
  51. Salomon J, Flower DR (2006) Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores. BMC Bioinformatics 7:501PubMedCrossRefGoogle Scholar
  52. Schirle M, Weinschenk T, Stevanovic S (2001) Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods 257:1–16PubMedCrossRefGoogle Scholar
  53. Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, Colon SM, Grey HM (1989) Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA 86:3296–3300PubMedCrossRefGoogle Scholar
  54. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237PubMedCrossRefGoogle Scholar
  55. Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561PubMedCrossRefGoogle Scholar
  56. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293PubMedCrossRefGoogle Scholar
  57. Takahashi H, Honda H (2006) Prediction of peptide binding to major histocompatibility complex class II molecules through use of boosted fuzzy classifier with SWEEP operator method. J Biosci Bioeng 101:137–141PubMedCrossRefGoogle Scholar
  58. Tong JC, Zhang GL, Tan TW, August JT, Brusic V, Ranganathan S (2006) Prediction of HLA-DQ3.2{beta} ligands: evidence of multiple registers in class II binding peptides. Bioinformatics 22:1232–1238PubMedCrossRefGoogle Scholar
  59. Toseland C, Clayton D, McSparron H, Hemsley S, Blythe M, Paine K, Doytchinova I, Guan P, Hattotuwagama C, Flower D (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1:4PubMedCrossRefGoogle Scholar
  60. Trost B, Bickis M, Kusalik A (2007) Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res 3:5PubMedCrossRefGoogle Scholar
  61. Udaka K, Wiesmuller KH, Kienle S, Jung G, Tamamura H, Yamagishi H, Okumura K, Walden P, Suto T, Kawasaki T (2000) An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Immunogenetics 51:816–828PubMedCrossRefGoogle Scholar
  62. Wan J, Liu W, Xu Q, Ren Y, Flower D, Li T (2006) SVRMHC prediction server for MHC-binding peptides. BMC Bioinformatics 7:463PubMedCrossRefGoogle Scholar
  63. Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V (2005) MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res 33:W172–W179PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Bioengineering (MC063)University of Illinois at ChicagoChicagoUSA

Personalised recommendations