Skip to main content
Log in

Evidence for myxobacterial origin of eukaryotic defensins

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Antimicrobial defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) motif are a large family of ancient, evolutionarily related innate immunity effectors of multicellular organisms. Although the widespread distribution in plants, fungi, and invertebrates suggests their uniqueness to Eukarya, it is unknown whether these eukaryotic defensins originated before or posterior to the emergence of eukaryotes. In this study, we provide evidence in support of the existence of defensin-like peptides (DLPs) in myxobacteria based on structural bioinformatics analysis, which recognized two bacterial peptides with a conserved cysteine-stabilized α-helical motif, a nested structural unit of the CSαβ motif. Similarity in sequence and structure to fungal DLPs together with restricted distribution to the myxobacteria as well as central role of the myxobacteria in the origin of eukaryotes suggest that the bacterial DLPs represent the ancestor of the eukaryotic defensins and could mediate immune defense of early eukaryotes after gene transfer to the proto-eukaryotic genome. Our work thus offers a basis for further investigation of prokaryotic origin of eukaryotic immune effector molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Blandin S, Moita LF, Köcher T, Wilm M, Kafatos F, Levashina EA (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3:852–856

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  • Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucl Acids Res 33:W36–W38

    Article  PubMed  CAS  Google Scholar 

  • Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  PubMed  CAS  Google Scholar 

  • Castrignanò T, De Meo, PD, Cozzetto, D, Talamo, IG, Tramontano A (2006) The PMDB protein model database. Nucleic Acids Res 34:D306–D309

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Gonsaud M, Keep NH, Davies AP, Ward J, Henderson B, Labesse G (2004) Resuscitation-promoting factors possess a lysozyme-like domain. Trends Biochem Sci 29:7–10

    Article  PubMed  CAS  Google Scholar 

  • Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448

    Article  PubMed  CAS  Google Scholar 

  • Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in gram positive bacteria. Curr Drug Targets 3:107–122

    Article  PubMed  CAS  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Guex N, Peitsch MC, Bairoch A (1998) New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res 8:348–353

    PubMed  CAS  Google Scholar 

  • Fjell CD, Hancock RE, Cherkasov A (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23:1148–1155

    Article  PubMed  CAS  Google Scholar 

  • Froy O (2005) Convergent evolution of invertebrate defensins and nematode antibacterial factors. Trends Microbiol 13:314–319

    Article  PubMed  CAS  Google Scholar 

  • Froy O, Gurevitz M (2003) Arthropod and mollusk defensins—evolution by exon-shuffling. Trends Genet 19:684–687

    Article  PubMed  CAS  Google Scholar 

  • Hogg PJ (2003) Disulfide bonds as switches for protein function. Trends Biochem Sci 28:210–214

    Article  PubMed  CAS  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins—components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Moreira D (2006) Selective force for the origin of the eukaryotic nucleus. Bioessays 28:525–533

    Article  PubMed  CAS  Google Scholar 

  • Mitta G, Hubert F, Noel T, Roch P (1999) Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem 265:71–78

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517–530

    Article  PubMed  CAS  Google Scholar 

  • Müller-Esterl W, Fritza H, Kellermannb J, Lottspeichb F, Machleidtc W, Turkd V (1985) Genealogy of mammalian cysteine proteinase inhibitors. Common evolutionary origin of stefins, cystatins and kininogens. FEBS Lett 191:221–226

    Article  PubMed  Google Scholar 

  • Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, Raventós D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver, D, Elvig-Jørgensen SG, Sørensen MV, Christensen BE, Kjærulff SK, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, van der Goes van Naters-Yasui A, Taylor D, Yamakawa M (2001) Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem Mol Biol 31:747–751

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  PubMed  CAS  Google Scholar 

  • Putsep K, Branden CI, Boman HG, Normark S (1999a) Antibacterial peptide from H. pylori. Nature 398:671–672

    Article  PubMed  CAS  Google Scholar 

  • Putsep K, Normark S, Boman HG (1999b) The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1. FEBS Lett 451:249–252

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1:15–21

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD (2005) On the evolution of invertebrate defensins. Trends Genet 21:330–332

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Lönneborg A (1996) Isolation and characterization of a cDNA encoding a plant defensin-like protein from roots of Norway spruce. Plant Mol Biol 31:707–712

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki H, Miura R, Kusunoki M, Kyogoku Y, Kobayashi Y, Moroder L (1998) Folding motifs induced and stabilized by distinct cystine frameworks. Protein Eng 11:649–659

    Article  PubMed  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF (2000) Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol 7:505–513

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kato Y (2003) Common structural properties specifically found in the CSαβ -type antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin? Dev Comp Immunol 27:499–503

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838

    Google Scholar 

  • Zhu S, Gao B (2006) Molecular characterization of a possible progenitor sodium channel toxin from the Old World scorpion Mesobuthus martensii. FEBS Lett 580:5979–5987

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Purificación López-García for his critical reading of the manuscript. This work was supported by grants from the National Natural Science Foundation of China (90608009) and the ‘Bairen Plan’ from the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunyi Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supplementary data are available at Immunogenetics online.

251_2007_259_MOESM1_ESM.doc

251_2007_259_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S. Evidence for myxobacterial origin of eukaryotic defensins. Immunogenetics 59, 949–954 (2007). https://doi.org/10.1007/s00251-007-0259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0259-x

Keywords

Navigation