Skip to main content
Log in

Modification of chicken avian β-defensin-8 at positively selected amino acid sites enhances specific antimicrobial activity

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs), essential components of innate immunity, are found in a range of phylogenetically diverse species and are thought to act by disrupting the membrane integrity of microbes. In this paper, we used evolutionary signatures to identify sites that are most relevant during the functional evolution of these molecules and introduced amino acid substitutions to improve activity. We first demonstrate that the anti-microbial activity of chicken avian β-defensin-8, previously known as gallinacin-12, can be significantly increased against Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella typhimurium phoP− mutant and Streptococcus pyogenes through targeted amino acid substitutions, which confer increased peptide charge. However, by increasing the AMP charge through amino acid substitutions at sites predicted to be subject to positive selection, antimicrobial activity against Escherichia coli was further increased. In contrast, no further increase in activity was observed against the remaining pathogens. This result suggests that charge-increasing modifications confer increased broad-spectrum activity to an AMP, whilst positive selection at particular sites is involved in directing the antimicrobial response against specific pathogens. Thus, there is potential for the rational design of novel therapeutics based on specifically targeted and modified AMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alana I, Hewage CM, Malthouse JP, Parker JC, Gault VA, O’Harte FP (2004) NMR structure of the glucose-dependent insulinotropic polypeptide fragment, GIP(1-30)amide. Biochem Biophys Res Commun 325:281–286

    Article  PubMed  CAS  Google Scholar 

  • Alana I, Parker JC, Gault VA, Flatt PR, O’Harte FP, Malthouse JP, Hewage CM (2006) NMR and alanine scan studies of glucose-dependent insulinotropic polypeptide in water. J Biol Chem 281:16370–16376

    Article  PubMed  CAS  Google Scholar 

  • Andrade MA, Chacon P, Merelo JJ, Moran F (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390

    Article  PubMed  CAS  Google Scholar 

  • Antcheva N, Boniotto M, Zelezetsky I, Pacor S, Verga Falzacappa MV, Crovella S, Tossi A (2004) Effects of positively selected sequence variations in human and Macaca fascicularis beta-defensins 2 on antimicrobial activity. Antimicrob Agents Chemother 48:685–688

    Article  PubMed  CAS  Google Scholar 

  • Bessalle R, Haas H, Goria A, Shalit I, Fridkin M (1992) Augmentation of the antibacterial activity of magainin by positive-charge chain extension. Antimicrob Agents Chemother 36:313–317

    PubMed  CAS  Google Scholar 

  • Boniotto M, Tossi A, DelPero M, Sgubin S, Antcheva N, Santon D, Masters J, Crovella S (2003) Evolution of the beta defensin 2 gene in primates. Genes Immun 4:251–257

    Article  PubMed  CAS  Google Scholar 

  • Campopiano DJ, Clarke DJ, Polfer NC, Barran PE, Langley RJ, Govan JR, Maxwell A, Dorin JR (2004) Structure-activity relationships in defensin dimers: a novel link between beta-defensin tertiary structure and antimicrobial activity. J Biol Chem 279:48671–48679

    Article  PubMed  CAS  Google Scholar 

  • Circo R, Skerlavaj B, Gennaro R, Amoroso A, Zanetti M (2002) Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism. Biochem Biophys Res Commun 293:586–592

    Article  PubMed  CAS  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501:146–150

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira T, Salemi M, Gordon M, Vandamme AM, van Rensburg EJ, Engelbrecht S, Coovadia HM, Cassol S (2004) Mapping sites of positive selection and amino acid diversification in the HIV genome: an alternative approach to vaccine design? Genetics 167:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Evans EW, Beach GG, Wunderlich J, Harmon BG (1994) Isolation of antimicrobial peptides from avian heterophils. J Leukoc Biol 56:661–665

    PubMed  CAS  Google Scholar 

  • Evans EW, Beach FG, Moore KM, Jackwood MW, Glisson JR, Harmon BG (1995) Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet Microbiol 47:295–303

    Article  PubMed  CAS  Google Scholar 

  • Harmon BG (1998) Avian heterophils in inflammation and disease resistance. Poult Sci 77:972–977

    PubMed  CAS  Google Scholar 

  • Harwig SS, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA, Aleshina GM, Shamova OV, Lehrer RI (1994) Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett 342:281–285

    Article  PubMed  CAS  Google Scholar 

  • Higgs R, Lynn DJ, Gaines S, McMahon J, Tierney J, James T, Lloyd AT, Mulcahy G, O’Farrelly C (2005) The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics 57:90–98

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob Agents Chemother 47:2804–2809

    Article  PubMed  CAS  Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection and the evolutionary history of major histocompatibility complex loci. Front Biosci 3:d509–d516

    PubMed  CAS  Google Scholar 

  • Lobley A, Whitmore L, Wallace BA (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Higgs R, Gaines S, Tierney J, James T, Lloyd AT, Fares MA, Mulcahy G, O’Farrelly C (2004a) Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56:170–177

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Lloyd AT, Fares MA, O’Farrelly C (2004b) Evidence of positively selected sites in mammalian alpha-defensins. Mol Biol Evol 21:819–827

    Article  PubMed  CAS  Google Scholar 

  • Lyn DJ, Higgs R, Lloyd AT, Hervé-Grépinet V, Nys Y, Brinkman FSL, Yu PL, Soulier A, Kaiser P, Zhang G, O’Farrelly C, Lehrer RI (2007) Avian beta-defesin nomenclature: a community proposed update. Immunol Lett DOI 10.1016/j.imlet.2007.03.007

  • Mandal M, Jagannadham MV, Nagaraj R (2002) Antibacterial activities and conformations of bovine beta-defensin BNBD-12 and analogs:structural and disulfide bridge requirements for activity. Peptides 23:413–418

    Article  PubMed  CAS  Google Scholar 

  • Massingham T, Goldman N (2005) Detecting amino acid sites under positive selection and purifying selection. Genetics 169:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta 1327:119–130

    Article  PubMed  CAS  Google Scholar 

  • Morrison GM, Semple CA, Kilanowski FM, Hill RE, Dorin JR (2003) Signal sequence conservation and mature peptide divergence within subgroups of the murine beta-defensin gene family. Mol Biol Evol 20:460–470

    Article  PubMed  CAS  Google Scholar 

  • Semple CA, Rolfe M, Dorin JR (2003) Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol 4:R31

    Article  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16:1315–1328

    PubMed  CAS  Google Scholar 

  • Thouzeau C, Le Maho Y, Froget G, Sabatier L, Le Bohec C, Hoffmann JA, Bulet P (2003) Spheniscins, avian beta-defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. J Biol Chem 278:51053–51058

    Article  PubMed  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA 100:8880–8885

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang G (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5:56

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Weiss TM, Lehrer RI, Huang HW (2000a) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79:2002–2009

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000b) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Yang Z, Swanson WJ, Vacquier VD (2000c) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455

    PubMed  CAS  Google Scholar 

  • Yu PL, Choudhury SD, Aherns K (2001) Purification and characterization of the antimicrobial peptide, ostricacin. Biotechnol Lett 23:207–210

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Nguyen T, Liu L, Sacco RE, Brogden KA, Lehrer RI (2001) Gallinacin-3, an inducible epithelial beta-defensin in the chicken. Infect Immun 69:2684–2691

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge Dr. Kieran Meade and Paul Cormican for helpful comments. This research was supported by the Food Institutional Research Measure (FIRM) Grant 01/R&D/D/135 from the Irish Department of Agriculture, Food and Rural Development. The authors declare no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliona O’Farrelly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1(A)

RP-HPLC chromatogram of A) AvBD8. The deprotected synthetic linear peptides were loaded onto a C18 RP-HPLC column in 0.1% trifluoroacetic acid and a gradient elution was performed using 0–100% 0.1% TFA (solution A) and acetonitrile (solution B) at ml/min flow rate. The flow through was monitored at 220 nm absorbency for the peptides (JPEG 49 kb)

High resolution image file (TIF 489 kb)

Supplementary Fig. 1(B)

RP-HPLC chromatogram of B) AvBD8ps+ (JPEG 50 kb)

High resolution image file (TIF 491 kb)

Supplementary Fig. 1(C)

RP-HPLC chromatogram of C) AvBD8ns+ (JPEG 83 kb)

High resolution image file (TIF 1437 kb)

Supplementary Fig. 1(D)

RP-HPLC chromatogram of D) AvBD8ps− (JPEG 49 kb)

High resolution image file (TIF 477 kb)

Supplementary Fig. 1(E)

RP-HPLC chromatogram of E) AvBD8ns− (JPEG 83 kb)

High resolution image file (TIF 1437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgs, R., Lynn, D.J., Cahalane, S. et al. Modification of chicken avian β-defensin-8 at positively selected amino acid sites enhances specific antimicrobial activity. Immunogenetics 59, 573–580 (2007). https://doi.org/10.1007/s00251-007-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0219-5

Keywords

Navigation