Immunogenetics

, Volume 59, Issue 6, pp 479–491 | Cite as

Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina

  • J. Susanne Hauswaldt
  • H. Stuckas
  • S. Pfautsch
  • R. Tiedemann
Original Paper

Abstract

While the anuran Xenopus comprises one of the best characterized nonmammalian taxa regarding the major histocompatibility complex (MHC), the organization of this gene complex has never been studied in other anurans, and information on amphibian MHC (other than Xenopus) is generally very scarce. Here, we describe the characterization of the first MHC class II B cDNA sequences from a nonmodel anuran species, the European fire-bellied toad (Bombina bombina). We isolated two transcript sequences differing substantially in amino acid composition and length within the β2 domain. To investigate the variability of the peptide binding region in this species, we sequenced a 158-bp large fragment from wild B. bombina (n = 20) and identified eight distinct alleles. All substitutions but one were nonsynonymous, and many of the highly polymorphic sites corresponded with amino acid positions known to be involved in antigen binding. The level of variation we found in B. bombina was similar compared to that previously found in a comparable sample of a wild urodelan species, Ambystoma tigrinum, and to that found in Xenopus laevis. Based on the cDNA data and the individual’s allelic diversity, we conclude that Bombina possesses at least two class II B loci. With our new β1 primers, we were able to generate sequences in other species of anurans. We provide here a first phylogenetic analysis of this gene in amphibians.

Keywords

Beta chain Amphibia Alytes obstetricans Xenopus laevis Rana temporaria 

References

  1. Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? TREE 21:433–438PubMedGoogle Scholar
  2. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494PubMedCrossRefGoogle Scholar
  3. Akaike H (1974) New look at statistical model identification. IEEE Trans Automat Contr AC19:716–723CrossRefGoogle Scholar
  4. Beck S, Geraghty D, Inoko H, Rowen L, Aguado B, Bahram S, Campbell RD, Forbes SA, Guillaudeux T, Hood L, Horton R, Janer M, Jasoni C, Madan A, Milne S, Neville M, Oka A, Qin S, Ribas-Despuig G, Rogers J, Shiina T, Spies T, Tamiya G, Tashiro H, Trowsdale J, Vu Q, Williams L, Yamazaki M (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921–923CrossRefGoogle Scholar
  5. Bos DH, DeWoody JA (2005) Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 57:775–781PubMedCrossRefGoogle Scholar
  6. Bos DH, Waldman B (2006) Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis. Mol Biol Evol 23:137–143PubMedCrossRefGoogle Scholar
  7. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) 3-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39PubMedCrossRefGoogle Scholar
  8. Cannatella DC, De Sa RO (1993) Xenopus laevis as a model organism. Syst Biol 42:476–507CrossRefGoogle Scholar
  9. Edwards SV, Grahn M, Potts WK (1995) Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 4:719–729PubMedGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362PubMedCrossRefGoogle Scholar
  13. Flajnik MF, Ohta Y, Namikawa-Yamada C, Nonaka M (1999) Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev 167:59–67PubMedCrossRefGoogle Scholar
  14. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623PubMedCrossRefGoogle Scholar
  15. Hauswaldt JS, Schröder C, Tiedemann R (2007) Nine new tetranucleotide microsatellite markers for the Fire-bellied Toad (Bombina bombina). Mol Ecol Notes 7:49–52CrossRefGoogle Scholar
  16. Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56:1902–1908PubMedCrossRefGoogle Scholar
  17. Hedrick P (2003) The major histocompatibility complex (MHC) in declining populations: an example of adaptive variation. In: Holt WV, Pickard AR, Rodger JC, Wildt DE (eds) Reproduction science and integrated conservation. Cambridge University Press, Cambridge, pp 97–113Google Scholar
  18. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC, Wrigh OMW, Wain HM, Trowsdale J, Ziegler A, Beck S (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899PubMedCrossRefGoogle Scholar
  19. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  20. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  21. Kaufman JF, Flajnik MF, Dupasquier L, Riegert P (1985) Xenopus MHC class-II molecules.1. Identification and structural characterization. J Immunol 134:3248–3257PubMedGoogle Scholar
  22. Kaufman J, Salomonsen J, Flajnik MF (1994) Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol 6:411–424PubMedCrossRefGoogle Scholar
  23. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695PubMedCrossRefGoogle Scholar
  24. Kobari F, Sato K, Shum BP, Tochinai S, Katagiri M, Ishibashi T, Dupasquier L, Flajnik MF, Kasahara M (1995) Exon–intron organization of Xenopus MHC class II beta chain genes. Immunogenetics 42:376–385PubMedCrossRefGoogle Scholar
  25. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  26. Landry C, Garant D, Duchesne P, Bernatchez L (2001) ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc R Soc Lond B 268:1279–1285CrossRefGoogle Scholar
  27. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759Google Scholar
  28. Laurens V, Chapusot C, Ordonez MD, Bentrari F, Padros MR, Tournefier A (2001) Axolotl MHC class II beta chain: predominance of one allele and alternative splicing of the beta 1 domain. Eur J Immunol 31:506–515PubMedCrossRefGoogle Scholar
  29. Madden DR (1995) The three-dimensional structure of peptide–MHC complexes. Annu Rev Immunol 13:587–622PubMedCrossRefGoogle Scholar
  30. Mau B, Newton MA (1997) Phylogenetic inference for binary data on dendograms using Markov chain Monte Carlo. J Comput Graph Stat 6:122–131CrossRefGoogle Scholar
  31. Mau B, Newton MA, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:1–12PubMedCrossRefGoogle Scholar
  32. Milinski M (2006) The major histocompatibility complex, sexual selection, and mate choice. Annu Rev Ecol Evol Syst 37:159–186CrossRefGoogle Scholar
  33. Miller HC, Belov K, Daugherty CH (2005) Characterization of MHC class II genes from an ancient reptile lineage, Sphenodon (tuatara). Immunogenetics 57:883–891PubMedCrossRefGoogle Scholar
  34. Miller HC, Belov K, Daugherty CH (2006) MHC class I genes in the tuatara (Sphenodon spp.): evolution of the MHC in an ancient reptilian order. Mol Biol Evol 23:949–956PubMedCrossRefGoogle Scholar
  35. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  36. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedCrossRefGoogle Scholar
  37. Ober C (1999) Studies of HLA, fertility and mate choice in a human isolate. Hum Reprod Update 5:103–107PubMedCrossRefGoogle Scholar
  38. Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685PubMedGoogle Scholar
  39. Pancer Z, Amemiya CT, Ehrhardt GRA, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180PubMedCrossRefGoogle Scholar
  40. Penn DJ (2002) The scent of genetic compatibility: Sexual selection and the major histocompatibility complex. Ethology 108:1–21CrossRefGoogle Scholar
  41. Penn D, Potts WK (1998) Chemical signals and parasite-mediated sexual selection. TREE 13:391–396Google Scholar
  42. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  43. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  44. Rannala B, Yang ZH (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedGoogle Scholar
  45. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641PubMedCrossRefGoogle Scholar
  46. Roelants K, Bossuyt F (2005) Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs. Syst Biol 54:111–126PubMedCrossRefGoogle Scholar
  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  48. Sammut B, Laurens V, Tournefier A (1997) Isolation of MHC class I cDNAs from the axolotl Ambystoma mexicanum. Immunogenetics 45:285–294PubMedCrossRefGoogle Scholar
  49. Sammut B, Du Pasquier L, Ducoroy P, Laurens V, Marcuz A, Tournefier A (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29:2897–2907PubMedCrossRefGoogle Scholar
  50. San Mauro D, Garcia-Paris M, Zardoya R (2004) Phylogenetic relationships of discoglossid frogs (Amphibia: Anura: Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343:357–366CrossRefGoogle Scholar
  51. Sato K, Flajnik MF, Dupasquier L, Katagiri M, Kasahara M (1993) Evolution of the MHC: isolation of class II beta chain cDNA clones from the amphibian Xenopus laevis. J Immunol 150:2831–2843PubMedGoogle Scholar
  52. Schneider S, Vincek V, Tichy H, Figueroa F, Klein J (1991) MHC class II genes of a marsupial, the red-necked wallaby (Macropus rufogriseus): identification of new gene families. Mol Biol Evol 8:753–766PubMedGoogle Scholar
  53. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  54. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247PubMedCrossRefGoogle Scholar
  55. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16PubMedCrossRefGoogle Scholar
  56. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221PubMedCrossRefGoogle Scholar
  57. Stuckas H, Tiedemann R (2006) Eight new microsatellite loci for the critically endangered fire-bellied toad Bombina bombina and their cross-species applicability among anurans. Mol Ecol Notes 6:150–152CrossRefGoogle Scholar
  58. Swofford DL (2003): PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  59. Tong J, Bramson J, Kanduc D, Chow S, Sinha A, Ranganathan S (2006) Modeling the bound conformation of Pemphigus Vulgaris-associated peptides to MHC Class II DR and DQ alleles. Immunome Res 2:1PubMedCrossRefGoogle Scholar
  60. van Oosterhout C, Joyce DA, Cummings SM, Blais J, Barson NJ, Ramnarine IW, Mohammed RS, Persad N, Cable J (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulata). Evolution 12:2562–2574CrossRefGoogle Scholar
  61. Wang JH, Meijers R, Xiong Y, Liu JH, Sakihama T, Zhang RG, Joachimiak A, Reinherz EL (2001) Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci USA 98:10799–10804PubMedCrossRefGoogle Scholar
  62. Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: predictions, progress, and prospects. Am Nat 160:S225–S237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Susanne Hauswaldt
    • 1
    • 2
  • H. Stuckas
    • 1
  • S. Pfautsch
    • 1
  • R. Tiedemann
    • 1
  1. 1.Unit of Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
  2. 2.Unit of Evolutionary GeneticsUniversity of CologneCologneGermany

Personalised recommendations