Skip to main content

Advertisement

Log in

Molecular characterization of coding sequences and analysis of Toll-like receptor 3 mRNA expression in water buffalo (Bubalus bubalis) and nilgai (Boselaphus tragocamelus)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Toll-like receptor 3 (TLR3), an antiviral innate immunity receptor recognizes double-stranded RNA, preferably of viral origin and induces type I interferon production, which causes maturation of phagocytes and subsequent release of chemical mediators from phagocytes against some viral infections. The present study has characterized TLR3 complementary DNA (cDNA) in buffalo (Bubalus bubalis) and nilgai (Boselaphus tragocamelus). TLR3 coding sequences of both buffalo and nilgai were amplified from cultured dendritic cell cDNA and cloned in pGEMT-easy vector for characterization by restriction endonucleases and nucleotide sequencing. Sequence analysis reveals that 2,715-bp-long TLR3 open reading frame encoding 904 amino acids in buffalo as well as nilgai is similar to that of cattle. Buffalo TLR3 has 98.6 and 97.9% identity at nucleotide level with nilgai and cattle, respectively. Likewise, buffalo TLR3 amino acids share 96.7% identity with cattle and 97.8% with nilgai. Non-synonymous substitutions exceeding synonymous substitutions indicate evolution of this receptor through positive selection among these three ruminant species. Buffalo and nilgai appear to have diverged from a common ancestor in phylogenetic analysis. Predicted protein structures of buffalo and nilgai TLR3 from deduced amino acid sequences indicate that the buffalo and nilgai TLR3 ectodomain may be more efficient in ligand binding than that of cattle. Furthermore, TLR3 messenger RNA expression in tissues as quantified by real-time PCR was found higher in nilgai than buffalo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptor: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  • Akosy E, Zouain CS, Vanhoutte F, Fontaine J, Pavelka N, Thiebelemont N, Willems F, Ricciardi-Castagonali P, Goldman M, Capron M, Ryeffel B, Trottein F (2005) Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J Biol Chem 280(1):277–283

    Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappa B by toll-like receptor 3. Nature 413(6857):732–738

    Article  PubMed  CAS  Google Scholar 

  • Anderson KV (2000) Toll signaling pathways in innate immune response. Curr Opin Immunol 12:13–19

    Article  PubMed  CAS  Google Scholar 

  • Baker PE, Knoblock KF (1982) Bovine costimulator II. Generation and maintenance of a costimulator dependent bovine lymphoblastoid cell lines. Vet Immunol Immunopathol 2:467–469

    Google Scholar 

  • Baldwin CL, Malu MN, Kinuthia SW, Conrad PA, Groottenhuis JG (1986) Comparative analysis of infection and transformation of lymphocytes from African buffalo and Boran cattle with Theileria parva subsp. Parva and T. parva subsp. Lawrenceit. Infect Immun 53(1):186–191

    PubMed  CAS  Google Scholar 

  • Bell JK, Askins J, Hall PR, Davies DR, Segal DM (2006) The dsRNA binding site of human toll-like receptor 3. Proc Natl Acad USA 103(23):8792–8797

    Article  CAS  Google Scholar 

  • Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, Davies DR (2005) The molecular structure of the toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci 102(31):10976–10980

    Article  PubMed  CAS  Google Scholar 

  • Choe J, Kelker MS, Wilson LA (2005) Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309(5734):585

    Article  Google Scholar 

  • Ezenwa VO (2004) Interaction among host diet, nutritional status and gastrointestinal parasite infection in wild bovis. Int J Parasitol 34:535–542

    Article  PubMed  Google Scholar 

  • Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159(1–2):12–19

    Article  PubMed  CAS  Google Scholar 

  • Funami K, Matsumoto M, Oshiumi H, Akazawa T, Yamamoto A, Seya T (2004) The cytoplasmic “linker region” in toll-like receptor 3 controls receptor localization and spicing. Int Immunol 16(8):1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Gaydos JK, Davidson WR, Elvinger F, Mead DG, Howerth EW, Stallknecht DE (2002) Innate resistance to epizootic hemorrhagic disease in white-tailed deer. J Wildl Dis 38:713–719

    PubMed  Google Scholar 

  • Guillot L, Le Geffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005) Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280(7):5571–5580

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson RL, Young SL, Lesmeister MJ, Lyddon TD, Misfeldt ML (2005) Human endometrial epithelial cells cyclically express toll-like receptor 3 (TLR3) and exhibit TLR3-dependent responses to dsRNA. Hum Immunol 66(5):469–482

    Article  PubMed  CAS  Google Scholar 

  • Kariko K, Ni H, Capodici J, Lamphier M, Weissmann D (2004a) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279(13):12542–12550

    Article  PubMed  CAS  Google Scholar 

  • Kariko K, Bhuyan P, Capodici J, Weissman D (2004b) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Scultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  PubMed  CAS  Google Scholar 

  • Meas S, Seto J, Sugimoto C, Bikhsh M, Riaz M, Sato T, Naeem K, Ohashi K, Onuma M (2000) Infection of bovine immunodeficiency virus and bovine leukemia viurs in water buffalo and cattle population in Pakistan. J Vet Med Sci 62(3):329–331

    Article  PubMed  CAS  Google Scholar 

  • Menzies M, Ingham A (2006) Identification and expression of Toll-like receptors 1–10 in selected bovine and ovine tissues. Vet Immunol Immunopathol 109(1–2):23–30

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164(11):5998–6004

    PubMed  CAS  Google Scholar 

  • Rehli M (2002) Of mice and men: species variation of toll-like receptor expression. Trends Immunol 23(8):375–378

    Article  PubMed  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci 95:588

    Article  PubMed  CAS  Google Scholar 

  • Rodroguez MF, Wiens GD, Purcell MK, Palti Y (2005) Characterization of toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics 57(7):510–519

    Article  Google Scholar 

  • Sarkar SN, Smith HL, Rowe TM, Sen GC (2003) Double-stranded RNA signaling by Toll-like receptor 3 requires specific tyrosine residue in its cytoplasmic domain. J Biol Chem 278(7):4393–4396

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Sen GC, Sarkar SN (2005) Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine Growth Factor Rev 16(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Duffy KE, Ranjith-Kumar CT, Xiong J, Lamb RJ, Santos J, Masarapu H, Cunningham M, Holzenburg A, Sarisky RT, Mbow ML, Kao C (2006) Structural and functional analyses of the human toll-like receptor 3: role of glycosylation. J Biol Chem 281(16):11144–11151

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptor in innate immunity. Int Immunol 17(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Wesch D, Beetz S, Oberg H, Marget M, Krengel K, Kabelitz, D (2006) Direct costimulatory effect of TLR3 ligand poly (I:C) on human γδ T lymphocytes. J Immunol 176(3):1348–1354

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Director of the Indian Veterinary Research Institute, Izatnagar for providing necessary facilities to carry out the work. A. D. is thankful to ICAR for providing the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohini Saini.

Electronic supplementary material

Below is the link to the electronic supplementary material

Photographs

(A, B) Buffalo Dendritic cells; C Immature Dendritic cell; D Mature Dendritic cell (E, F) Nilgai Dendritic cells. Dendritic cells are marked by arrow (DOC 10718 kb)

Table 1

Changes in the nucleotide positions in the TLR3 coding sequences (DOC 184 kb)

Table 2

Changes in the amino acid positions in different domain of TLR3 protein sequences (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhara, A., Saini, M., Das, D.K. et al. Molecular characterization of coding sequences and analysis of Toll-like receptor 3 mRNA expression in water buffalo (Bubalus bubalis) and nilgai (Boselaphus tragocamelus). Immunogenetics 59, 69–76 (2007). https://doi.org/10.1007/s00251-006-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0174-6

Keywords

Navigation