Skip to main content

Advertisement

Log in

Gene discovery at the human T-cell receptor α/δ locus

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The human T-cell receptor (TCR) α/δ variable loci are interspersed on the chromosome 14q11 and consist of 57 intergenic spaces ranging from 4 to 100 kb in length. To elucidate the evolutionary history of this locus, we searched the intergenic spaces of all TCR α/δ variable (TRAV/DV) genes for pseudogenes and potential protein-coding genes. We applied direct open reading frame (ORF) searches, an exon-finding algorithm and comparative genomics. Two TRAV/DV pseudogenes were discovered bearing 80 and 65% sequence similarity to TRAV14DV4 and TRAV9-1/9-2 genes, respectively. A gene bearing 85% sequence identity to B lymphocyte activation-related protein, BC-1514, upstream of TRAV26-2 was also discovered. This ORF (BC-1514tcra) is a member of a gene family whose evolutionary history and function are not known. In total, 36 analogs of this gene exist in the human, the chimpanzee, the Rhesus monkey, the frog and the zebrafish. Phylogenetic analyses show convergent evolution of these genes. Assays for the expression of BC-1514tcra revealed transcripts in the bone marrow, thymus, spleen, and small intestine. These assays also showed the expression of another analog to BC-1514, found on chromosome 5 in the bone marrow and thymus RNA. The existence of at least 17 analogs at various locations in the human genome and in nonsyntenic chromosomes of the chimpanzee suggest that BC-1514tcra, along with its analogs may be transposable elements with evolved function(s). The identification of conserved putative serine phosphorylation sites provide evidence of their possible role(s) in signal transduction events involved in B cell development and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993) Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4:373–380

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu Y, Tsurushita N, Nagawa F, Matsuoka M, Okazaki K, Imai M, Sakano H (1994) Essential residues in V(D)J recombination signals. J Immunol 153:4520–4529

    PubMed  CAS  Google Scholar 

  • Akira S, Okazaki K, Sakano H (1987) Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science 238:1134–1138

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Misra S, Roote J, Lewis SE, Blazej R, Davis T, Doyle C, Galle R, George R, Harris N, Hartzell G, Harvey D, Hong L, Houston K, Hoskins R, Johnson G, Martin C, Moshrefi A, Palazzolo M, Reese MG, Spradling A, Tsang G, Wan K, Whitelaw K, Celniker S et al (1999) An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics 153:179–219

    PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Bogue M, Roth DB (1996) Mechanism of V(D)J recombination. Curr Opin Immunol 8:175–180

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ (2002) Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proc Natl Acad Sci USA 99:13633–13635

    Article  PubMed  CAS  Google Scholar 

  • Bruls T, Gyapay G, Petit JL, Artiguenave F, VicoV, Qin S, Tin-Wollam AM, Da Silva C, Muselet D, Mavel D, Pelletier E, Levy M, Fujiyama A, Matsuda F, Wilson R, Rowen L, Hood L, Weissenbach J, Saurin W, Heilig R (2001) A physical map of human chromosome 14. Nature 409:947–948

    Article  PubMed  CAS  Google Scholar 

  • Bystroff C, Shao Y (2002) Fully automated ab initio protein structure prediction using I-sites, HMMSTR and Rosetta. Bioinformatics 18(Suppl 1):S54–S61

    PubMed  Google Scholar 

  • Bystroff C, Thorsson V, Baker D (2000) HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins. J Mol Biol 301:173–190

    Article  PubMed  CAS  Google Scholar 

  • Cooper PR, Smilinich NJ, Day CD, Nowak NJ, Reid LH, Pearsall RS, Reece M, Prawitt D, Landers J, Housman DE, Winterpacht A, Zabel BU, Pelletier J, Weissman BE, Shows TB, Higgins MJ (1998) Divergently transcribed overlapping genes expressed in liver and kidney and located in the 11p15.5 imprinted domain. Genomics 49:38–51

    Article  PubMed  CAS  Google Scholar 

  • Cowell LG, Davila M, Kepler TB, Kelsoe G (2002) Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biol 3:RESEARCH0072

    Article  PubMed  Google Scholar 

  • Cowell LG, Davila M, Yang K, Kepler TB, Kelsoe G (2003) Prospective estimation of recombination signal efficiency and identification of functional cryptic signals in the genome by statistical modeling. J Exp Med 197:207–220

    Article  PubMed  CAS  Google Scholar 

  • Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O’Brien KP et al (1999) The DNA sequence of human chromosome 22. Nature 402:489–495

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Mouchiroud D, Gautier C (1995) Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol 40:308–317

    Article  PubMed  CAS  Google Scholar 

  • Golub R, Huang CY, Kanagawa O, Wu GE (2001) Valpha gene replacement in a TCRalpha knock-in mouse. Eur J Immunol 31:2919–2925

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Haynes MR, Wu GE (2004) Evolution of the variable gene segments and recombination signal sequences of the human T-cell receptor alpha/delta locus. Immunogenetics 56:470–479

    Article  PubMed  CAS  Google Scholar 

  • Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Bruls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Segurens B, Aniere F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Mairey-Estrada B, Mangenot S, Martins N, Menard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufosse-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guerin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quetier F, Waterston R, Hood L, Weissenbach J (2003) The DNA sequence and analysis of human chromosome 14. Nature 421:601–607

    Article  PubMed  CAS  Google Scholar 

  • Jones JM, Gellert M (2004) The taming of a transposon: V(D)J recombination and the immune system. Immunol Rev 200:233–248

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16:55–65

    Article  PubMed  CAS  Google Scholar 

  • Koop BF, Rowen L, Wang K, Kuo CL, SetoD, Lenstra JA, Howard S, Shan W, Deshpande P, Hood L (1994) The human T-cell receptor TCRAC/TCRDC (C alpha/C delta) region: organization, sequence, and evolution of 97.6 kb of DNA. Genomics 19:478–493

    Article  PubMed  CAS  Google Scholar 

  • Lefranc MP (2001) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 29:207–209

    Article  PubMed  CAS  Google Scholar 

  • Lefranc MP, Lefranc G (2001) T Cell Receptor FactsBook. Academic, Harcourt, pp 87–184, 363–371

    Google Scholar 

  • Lefranc MP (2003) IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis. http://www.imgt.cines.fr. Leukemia 17:260–266

  • Lewis SM, Wu GE (1997) The origins of V(D)J recombination. Cell 88:159–162

    Article  PubMed  CAS  Google Scholar 

  • Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J (1998) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  • Lu XW, Yin JY, Cui LX (2001) Cloning of human B lymphocyte activation-related novel gene. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 23:27–31

    PubMed  Google Scholar 

  • Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci USA 101:2584–2589

    Article  PubMed  CAS  Google Scholar 

  • Markert ML, Hutton JJ, Wiginton DA, States JC, Kaufman RE (1988) Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements. J Clin Invest 81:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Martin A (2001) The phylogenetic placement of chondrichthyes: inferences from analysis of multiple genes and implications for comparative studies. Genetica 111:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  • Mironov AA, Fickett JW, Gelfand MS (1999) Frequent alternative splicing of human genes. Genome Res 9:1288–1293

    Article  PubMed  CAS  Google Scholar 

  • Montecino-Rodriguez E, Johnson A, Dorshkind K (1996) Thymic stromal cells can support B cell differentiation from intrathymic precursors. J Immunol 156:963–967

    PubMed  CAS  Google Scholar 

  • Okazaki K, Davis DD, Sakano H (1987) T cell receptor beta gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining. Cell 49:477–485

    Article  PubMed  CAS  Google Scholar 

  • Polard P, Chandler M (1995) Bacterial transposases and retroviral integrases. Mol Microbiol 15:13–23

    Article  PubMed  CAS  Google Scholar 

  • Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:166–175

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Craigie R, Davies DR (1996) Retroviral integrases and their cousins. Curr Opin Struct Biol 6:76–83

    Article  PubMed  CAS  Google Scholar 

  • Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological sequences: the Teiresias algorithm. Bioinformatics 14:55–67

    Article  PubMed  CAS  Google Scholar 

  • Rogers JS (2001) Maximum likelihood estimation of phylogenetic trees is consistent when substitution rates vary according to the invariable sites plus gamma distribution. Syst Biol 50:713–722

    Article  PubMed  CAS  Google Scholar 

  • Rogic S, Mackworth AK, Ouellette FB (2001) Evaluation of gene-finding programs on mammalian sequences. Genome Res 11:817–832

    Article  PubMed  CAS  Google Scholar 

  • Rogic S, Ouellette BF, Mackworth AK (2002) Improving gene recognition accuracy by combining predictions from two gene-finding programs. Bioinformatics 18:1034–1045

    Article  PubMed  CAS  Google Scholar 

  • Scaviner D, Lefranc MP (2000) The human T cell receptor alpha variable (TRAV) genes. Exp Clin Immunogenet 17:83–96

    Article  PubMed  CAS  Google Scholar 

  • Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Dohner H, Dohner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD, Tsui LC (2003) Human chromosome 7: DNA sequence and biology. Science 300:767–772

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Churakov G, Zischler H, Brosius J (2004) A novel class of mammalian-specific tailless retropseudogenes. Genome Res 14:1911–1915

    Article  PubMed  CAS  Google Scholar 

  • Stanke M, Morgenstern B (2005) Augustus: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467

    Article  PubMed  CAS  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:W309–W312

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2003) PAUP: Phylogenetic Analysis Using Parsimony. Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tobiason DM, Buchner JM, Thiel WH, Gernert KM, Karls AC (2001) Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv. Mol Microbiol 39:641–651

    Article  PubMed  CAS  Google Scholar 

  • Tran AH, Mrkobrada M, Wu GE (2002) Identification of potential regulatory elements in the human immunoglobulin loci. Blood Cells Mol Diseases 29:86–93

    Article  Google Scholar 

  • Verschuren MC, Wolvers-Tettero IL, Breit TM, van Dongen JJ (1998) T-cell receptor V delta-J alpha rearrangements in human thymocytes: the role of V delta-J alpha rearrangements in T-cell receptor-delta gene deletion. Immunology 93:208–212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by funds from the Canadian Institutes of Health Research to G.W. The authors would like to thank L. Cunningham, T. Da Sylva, and L. Rumfelt for their helpful comments and discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marsha R. Haynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, M.R., Wu, G.E. Gene discovery at the human T-cell receptor α/δ locus. Immunogenetics 59, 109–121 (2007). https://doi.org/10.1007/s00251-006-0165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0165-7

Keywords

Navigation