Skip to main content
Log in

Gene conversion in human rearranged immunoglobulin genes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Over the past 20 years, many DNA sequences have been published suggesting that all or part of the VH segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial VH replacements with no addition of untemplated nucleotides at the VH–VH joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of VH replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. R=A/G, Y=C/T, W=A/T, D=A/G/T, H=C/T/A.

References

  • Arakawa H, Buerstedde JM (2004) Immunoglobulin gene conversion: insights from bursal B cells and the DT40 cell line. Dev Dyn 229:458–464

    Article  PubMed  CAS  Google Scholar 

  • Beale RC, Petersen-Mahrt SK, Watt IN, Harris RS, Rada C, Neuberger MS (2004) Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol 337:585–596

    Article  PubMed  CAS  Google Scholar 

  • Becker RS, Knight KL (1990) Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell 63:987–997

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Greenberg SJ, Du TL, Ward PM, Overturf PM, Brecher ML, Ballow M (1996) Clonal evolution in B-lineage acute lymphoblastic leukemia by contemporaneous VH–VH gene replacements and VH–DJH gene rearrangements. Blood 87:2506–2512

    PubMed  CAS  Google Scholar 

  • D’Avirro N, Truong D, Luong M, Kanaar R, Selsing E (2002) Gene conversion-like sequence transfers between transgenic antibody V genes are independent of RAD54. J Immunol 169:3069–3075

    PubMed  CAS  Google Scholar 

  • D’Avirro N, Truong D, Xu B, Selsing E (2005) Sequence transfers between variable regions in a mouse antibody transgene can occur by gene conversion. J Immunol 175:8133–8137

    PubMed  CAS  Google Scholar 

  • Darlow JM, Stott DI (2005) VH replacement in rearranged immunoglobulin genes. Immunology 114:155–165

    Article  PubMed  CAS  Google Scholar 

  • David V, Folk NL, Maizels N (1992) Germ line variable regions that match hypermutated sequences in genes encoding murine anti-hapten antibodies. Genetics 132:799–811

    PubMed  CAS  Google Scholar 

  • Dildrop R, Bruggemann M, Radbruch A, Rajewsky K, Beyreuther K (1982) Immunoglobulin V region variants in hybridoma cells. II. Recombination between V genes. EMBO J 1:635–640

    PubMed  CAS  Google Scholar 

  • Elliott B, Jasin M (2001) Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 21:2671–2682

    Article  PubMed  CAS  Google Scholar 

  • Foster SJ, Dörner T, Lipsky PE (1999) Somatic hypermutation of VkappaJkappa rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs. Eur J Immunol 29:4011–4021

    Article  PubMed  CAS  Google Scholar 

  • Gontier É, Ayrault O, Godet I, Nau F, Ladevèze V (2005) Developmental progression of immunoglobulin heavy chain diversity in sheep. Vet Immunol Immunopathol 103:31–51

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Meffre E, Albesiano E, Farber A, Dines D, Stein P, Asnis SE, Furie RA, Jain RI, Chiorazzi N (2000) Immunoglobulin heavy chain variable region gene replacement as a mechanism for receptor revision in rheumatoid arthritis synovial tissue B lymphocytes. J Exp Med 192:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Kleinfield R, Hardy RR, Tarlinton D, Dangl J, Herzenberg LA, Weigert M (1986) Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature 322:843–846

    Article  PubMed  CAS  Google Scholar 

  • Kobrin CB, Bendandi M, Kwak LW (2001) Novel secondary Ig VH gene rearrangement and in-frame Ig heavy chain complementarity-determining region III insertion/deletion variants in de novo follicular lymphoma. J Immunol 166:2235–2243

    PubMed  CAS  Google Scholar 

  • Krawinkel U, Zoebelein G, Bruggemann M, Radbruch A, Rajewsky K (1983) Recombination between antibody heavy chain variable-region genes: evidence for gene conversion. Proc Natl Acad Sci U S A 80:4997–5001

    Article  PubMed  CAS  Google Scholar 

  • Lenze D, Greiner A, Knorr C, Anagnostopoulos I, Stein H, Hummel M (2003) Receptor revision of immunoglobulin heavy chain genes in human MALT lymphomas. Mol Pathol 56:249–255

    Article  PubMed  CAS  Google Scholar 

  • Lucier MR, Thompson RE, Waire J, Lin AW, Osborne BA, Goldsby RA (1998) Multiple sites of V lambda diversification in cattle. J Immunol 161:5438–5444

    PubMed  CAS  Google Scholar 

  • Martin A, Scharff MD (2002) AID and mismatch repair in antibody diversification. Nat Rev Immunol 2:605–614

    Article  PubMed  CAS  Google Scholar 

  • McCormack WT, Thompson CB (1990) Chicken IgL variable region gene conversions display pseudogene donor preference and 5′ to 3′ polarity. Genes Dev 4:548–558

    Article  PubMed  CAS  Google Scholar 

  • Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK (2003) Immunity through DNA deamination. Trends Biochem Sci 28:305–312

    Article  PubMed  CAS  Google Scholar 

  • Parng C-L, Hansal S, Goldsby RA, Osborne BA (1996) Gene conversion contributes to Ig light chain diversity in cattle. J Immunol 157:5478–5486

    PubMed  CAS  Google Scholar 

  • Reth M, Gehrmann P, Petrac E, Wiese P (1986) A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature 322:840–842

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Diaz M (2004) Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol 172:3382–3384

    PubMed  CAS  Google Scholar 

  • Rogozin IB, Kolchanov NA (1992) Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta 1171:11–18

    PubMed  CAS  Google Scholar 

  • Rosenquist R, Thunberg U, Li AH, Forestier E, Lonnerholm G, Lindh J, Sundstrom C, Sallstrom J, Holmberg D, Roos G (1999) Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing precursor-B acute lymphoblastic leukemia. Eur J Haematol 63:171–179

    Article  PubMed  CAS  Google Scholar 

  • Sehgal D, Schiaffella E, Anderson AO, Mage RG (2000) Generation of heterogeneous rabbit anti-DNP antibodies by gene conversion and hypermutation of rearranged VL and VH genes during clonal expansion of B cells in splenic germinal centers. Eur J Immunol 30:3634–3644

    Article  PubMed  CAS  Google Scholar 

  • Selsing E, Xu B, Sigurdardottir D (1996) Gene conversion and homologous recombination in murine B cells. Semin Immunol 8:151–158

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen EJ, Verhagen OJ, van Leeuwen EF, dem Borne AE, van der Schoot CE (1993) Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood 82:581–589

    PubMed  CAS  Google Scholar 

  • Steenbergen EJ, Verhagen OJ, Nibbering CP, van den Berg H, van Leeuwen EF, Behrendt H, dem Borne AE, van der Schoot CE (1996) Clonal evolution of immunoglobulin heavy chain rearrangements in childhood B-precursor acute lymphoblastic leukemia after engraftment in SCID mice. Leukemia 10:1471–1478

    PubMed  CAS  Google Scholar 

  • Steenbergen EJ, Verhagen OJ, van den Berg H, van Leeuwen EF, Behrendt H, Slater RR, dem Borne AE, van der Schoot CE (1997) Rearrangement status of the malignant cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood B precursor acute lymphoblastic leukemia. Leukemia 11:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Tsai HF, D’Avirro N, Selsing E (2002) Gene conversion-like sequence transfers in a mouse antibody transgene: antigen selection allows sensitive detection of V region interactions based on homology. Int Immunol 14:55–64

    Article  PubMed  CAS  Google Scholar 

  • Wasserman R, Yamada M, Ito Y, Finger LR, Reichard BA, Shane S, Lange B, Rovera G (1992) VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 79:223–228

    PubMed  CAS  Google Scholar 

  • Weinstein PD, Anderson AO, Mage RG (1994) Rabbit IgH sequences in appendix germinal centers: VH diversification by gene conversion-like and hypermutation mechanisms. Immunity 1:647–659

    Article  PubMed  CAS  Google Scholar 

  • Wilson PC, Wilson K, Liu YJ, Banchereau J, Pascual V, Capra JD (2000) Receptor revision of immunoglobulin heavy chain variable region genes in normal human B lymphocytes. J Exp Med 191:1881–1894

    Article  PubMed  CAS  Google Scholar 

  • Winstead CR, Zhai SK, Sethupathi P, Knight KL (1999) Antigen-induced somatic diversification of rabbit IgH genes: gene conversion and point mutation. J Immunol 162:6602–6612

    PubMed  CAS  Google Scholar 

  • Wysocki LJ, Gefter ML (1989) Gene conversion and the generation of antibody diversity. Annu Rev Biochem 58:509–531

    Article  PubMed  CAS  Google Scholar 

  • Zan H, Wu X, Komori A, Holloman WK, Casali P (2003) AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. Immunity 18:727–738

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zemlin M, Wang YH, Munfus D, Huye LE, Findley HW, Bridges SL, Roth DB, Burrows PD, Cooper MD (2003) Contribution of VH gene replacement to the primary B cell repertoire. Immunity 19:21–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Scottish Executive, Chief Scientist Office, Grant No. CZB/4/14 and Cancer Research UK, Grant No. 4327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Darlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darlow, J.M., Stott, D.I. Gene conversion in human rearranged immunoglobulin genes. Immunogenetics 58, 511–522 (2006). https://doi.org/10.1007/s00251-006-0113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0113-6

Keywords

Navigation