Immunogenetics

, Volume 57, Issue 10, pp 717–729 | Cite as

High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR–SSOP–Luminex method in the Japanese population

  • Yoshiki Itoh
  • Nobuhisa Mizuki
  • Tsuyako Shimada
  • Fumihiro Azuma
  • Mitsuo Itakura
  • Koichi Kashiwase
  • Eri Kikkawa
  • Jerzy K. Kulski
  • Masahiro Satake
  • Hidetoshi Inoko
Original Paper

Abstract

We have developed a new high-throughput, high-resolution genotyping method for the detection of alleles at the human leukocyte antigen (HLA)-A, -B, -C, and -DRB1 loci by combining polymerase chain reaction (PCR) and sequence-specific oligonucleotide probes (SSOPs) protocols with the Luminex 100 xMAP flow cytometry dual-laser system to quantitate fluorescently labeled oligonucleotides attached to color-coded microbeads. In order to detect the HLA alleles with a frequency of more than 0.1% in the Japanese population, we created 48 oligonucleotide probes for the HLA-A locus, 61 for HLA-B, 34 for HLA-C, and 51 for HLA-DRB1. The accuracy of the PCR–SSOP–Luminex method was determined by comparing it to the nucleotide sequencing method after subcloning into the plasmid vector using 150 multinational control samples obtained from the International HLA DNA Exchange University of California Los Angeles. In addition, we performed the PCR–SSOP–Luminex method for HLA allele typing on DNA samples collected from 1,018 Japanese volunteers. Overall, the genotyping method exhibited an accuracy of 85.91% for HLA-A, 85.03% for HLA-B, 97.32% for HLA-C, and 90.67% for HLA-DRB1 using 150 control samples, and 100% for HLA-A and -C, 99.90% for HLA-B, and 99.95% for HLA-DRB1 in 1,018 Japanese samples. The PCR–SSOP–Luminex method provides a simple, accurate, and rapid approach toward multiplex genotyping of HLA alleles to the four-digit or higher level of resolution in the Japanese population. It takes only approximately 5 h from DNA extraction to the definition of HLA four-digit alleles at the HLA-A, HLA-B, HLA-C, and HLA-DRB1 loci for 96 samples when handled by a single typist.

Keywords

HLA genotyping PCR SSOP Luminex method Japanese 

Abbreviations

HLA

Human leukocyte antigen

MHC

Major histocompatibility complex

PCR

Polymerase chain reaction

SSCP

Single-strand conformational polymorphism

RFLP

Restriction fragment length polymorphism

SSP

Sequence-specific primer

SSOP

Sequence-specific oligonucleotide probe

UCLA

University of California Los Angeles

SA–PE

Streptavidin–phycoerythrin

EDC

Ethylene dichloride

MFI

Median fluorescence intensity

IC

Internal control

References

  1. Ando H, Mizuki N, Ando R, Miyata Y, Miyata S, Wakisaka K, Inoko H (1996) HLA-C genotyping in the Japanese population by the PCR–SSP method. Tissue Antigens 48:55–58PubMedGoogle Scholar
  2. Bannai M, Tokunaga K, Lin L, Ogawa A, Fujisawa K, Juji T (1996) HLA-B40, B18, B27, and B37 allele discrimination using group-specific amplification and SSCP method. Hum Immunol 46:107–113CrossRefPubMedGoogle Scholar
  3. Calmus Y (2004) Graft-versus-host disease following living donor liver transplantation: high risk when the donor is HLA-homozygous. J Hepatol 41:505–507CrossRefGoogle Scholar
  4. Claas FH, van der Poel JJ, Castelli-Visser R, Pool J, Chen RB, Xu KY, van Rood JJ (1985) Interaction between des-Tyr1-gamma-endorphin and HLA class I molecules: serological detection of an HLA-A2 subtype. Immunogenetics 22:309–314CrossRefPubMedGoogle Scholar
  5. Comas D, Mateu E, Calafell F, Perez-Lezaun A, Bosch E, Martinez-Arias R, Bertranpetit J (1998) HLA class I and class II DNA typing and the origin of Basques. Tissue Antigens 51:30–40PubMedGoogle Scholar
  6. Comey CT, Budowle B, Adams DE, Baumstark AL, Lindsey JA, Presley LA (1993) PCR amplification and typing of the HLA DQ alpha gene in forensic samples. J Forensic Sci 38:239–249PubMedGoogle Scholar
  7. Diaz MR, Fell JW (2004) High-throughput detection of pathogenic yeasts of the genus trichosporon. J Clin Microbiol 42:3696–3706CrossRefPubMedGoogle Scholar
  8. Dunbar SA, Vander Zee CA, Oliver KG, Karem KL, Jacobson JW (2003) Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53:245–252CrossRefPubMedGoogle Scholar
  9. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR Jr (1997) Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 43:1749–1756PubMedGoogle Scholar
  10. Hashimoto M, Kinoshita T, Yamasaki M, Tanaka H, Imanishi T, Ihara H, Ichikawa Y, Fukunishi T (1994) Gene frequencies and haplotypic associations within the HLA region in 916 unrelated Japanese individuals. Tissue Antigens 44:166–173PubMedGoogle Scholar
  11. Hawkins BR, Higgins DA, Chan SL, Lowrie DB, Mitchison DA, Girling DJ (1988) HLA typing in the Hong Kong Chest Service/British Medical Research Council study of factors associated with the breakdown to active tuberculosis of inactive pulmonary lesions. Am Rev Respir Dis 138:1616–1621PubMedGoogle Scholar
  12. Huang JL, Yeh CC, Shaw CK, Yao TC, Chen LC, Lee TD, Kuo ML (2004) HLA-DRB1 genotyping in patients with juvenile idiopathic arthritis in Taiwan. Eur J Immunogenet 31:185–188PubMedCrossRefGoogle Scholar
  13. Hurley CK, Baxter LA, Logan B, Karanes C, Anasetti C, Weisdorf D, Confer DL (2003) National Marrow Donor Program HLA-matching guidelines for unrelated marrow transplants. Biol Blood Marrow Transplant 9:610–615CrossRefPubMedGoogle Scholar
  14. Imanishi T, Akaza T, Kimura A, Tokunaga K, Gojobori T (1992) Estimation of allele and haplotype frequencies for HLA and complement loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) HLA 1991. Proceedings of the 11th International Histocompatibility Workshop and Conference, vol 1. Oxford University Press, Oxford, pp 76–79Google Scholar
  15. Kamoun M, Sellers MT (2004) Changing the priority for HLA matching in kidney transplantation. N Engl J Med 350:2095–2096CrossRefPubMedGoogle Scholar
  16. Kojima S, Inaba J, Yoshimi A, Takahashi Y, Watanabe N, Kudo K, Horibe K, Maeda N, Kato K, Matsuyama T (2001) Unrelated donor marrow transplantation in children with severe aplastic anaemia using cyclophosphamide, anti-thymocyte globulin and total body irradiation. Br J Haematol 114:706–711CrossRefPubMedGoogle Scholar
  17. Levine JE, Yang SY (1994) SSOP typing of the Tenth International Histocompatibility Workshop reference cell lines for HLA-C alleles. Tissue Antigens 44:174–183PubMedGoogle Scholar
  18. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Geraghty DE, Hansen JA, Hurley CK, Mach B, Mayr WR, Parham P, Petersdorf EW, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A, Terasaki PI, Trowsdale J (2005) Nomenclature for factors of the HLA system, 2004. Tissue Antigens 65:301–369CrossRefPubMedGoogle Scholar
  19. Matinlauri IH, Kyllonen LE, Eklund BH, Koskimies SA, Salmela KT (2004) Weak humoral posttransplant alloresponse after a well-HLA-matched cadaveric kidney transplantation. Transplantation 78:198–204CrossRefPubMedGoogle Scholar
  20. Mizuki N, Inoko H, Mizuki N, Tanaka H, Kera J, Tsuiji K, Ohno S (1992a) Human leukocyte antigen serologic and DNA typing of Behcet's disease and its primary association with B51. Invest Ophthalmol Vis Sci 33:3332–3340PubMedGoogle Scholar
  21. Mizuki N, Ohno S, Sugimura K, Seki T, Kikuti YY, Ando A, Ota M, Tsuji K, Inoko H (1992b) PCR-RFLP is as sensitive and reliable as PCR-SSO in HLA class II genotyping. Tissue Antigens 40:100–103PubMedGoogle Scholar
  22. Mizuki N, Ota M, Katsuyama Y, Yabuki K, Ando H, Shiina T, Nomura E, Onari K, Ohno S, Inoko H (2001) HLA-B*51 allele analysis by the PCR-SBT method and a strong association of HLA-B*5101 with Japanese patients with Behcet's disease. Tissue Antigens 58:181–184CrossRefPubMedGoogle Scholar
  23. Olerup O (1990) HLA class I typing by digestion of PCR-amplified DNA with allele specific restriction endonucleases. Tissue Antigens 36:83–87PubMedGoogle Scholar
  24. Ota M, Seki T, Fukushima H, Tsuji K, Inoko H (1992) HLA-DRB1 genotyping by modified PCR-RFLP method combined with group-specific primers. Tissue Antigens 39:187–202PubMedGoogle Scholar
  25. Pugliese A, Bugawan T, Moromisato R, Awdeh ZL, Alper CA, Jackson RA, Erlich HA, Eisenbarth GS (1994) Two subsets of HLA-DQA1 alleles mark phenotypic variation in levels of insulin autoantibodies in first degree relatives at risk for insulin-dependent diabetes. J Clin Invest 93:2447–2452PubMedCrossRefGoogle Scholar
  26. Ramon D, Braden M, Adams S, Marincola FM, Wang L (2003) Pyrosequencing trade mark: a one-step method for high resolution HLA typing. J Transl Med 26:9CrossRefGoogle Scholar
  27. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  28. Saito S, Ota S, Yamada E, Inoko H, Ota M (2000) Allele frequencies and haplotypic associations defined by allelic DNA typing at HLA class I and class II loci in the Japanese population. Tissue Antigens 56:522–529CrossRefPubMedGoogle Scholar
  29. Santamaria P, Lindstrom AL, Boyce-Jacino MT, Myster SH, Barbosa JJ, Faras AJ, Rich SS (1993) HLA class I sequence-based typing. Hum Immunol 37:39–50CrossRefPubMedGoogle Scholar
  30. Scheltinga SA, Lai SM, van der Zwan AW, Tilanus MG, Wu S (2000) A novel HLA-A24 (A*2420) allele identified in the Atayal tribe of Taiwan. Tissue Antigens 55:65–67CrossRefPubMedGoogle Scholar
  31. Shiina T, Inoko H, Kulski JK (2004) An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64:631–649CrossRefPubMedGoogle Scholar
  32. Spencer A, Szydlo RM, Brookes PA, Kaminski E, Rule S, van Rhee F, Ward KN, Hale G, Waldmann H, Hows JM, Batchelor JR, Goldman JM (1995) Bone marrow transplantation for chronic myeloid leukemia with volunteer unrelated donors using ex vivo or in vivo T-cell depletion: major prognostic impact of HLA class I identity between donor and recipient. Blood 86:3590–3597PubMedGoogle Scholar
  33. Spiro A, Lowe M, Brown D (2000) A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. Appl Environ Microbiol 66:4258–4265PubMedCrossRefGoogle Scholar
  34. Tanaka H, Akaza T, Juji T (1996) Report of the Japanese Central Bone Marrow Data Center. Clin Transpl pp 139–144Google Scholar
  35. Tanaka T, Ohmori M, Yasunaga S, Ohshima K, Kikuchi M, Sasazuki T (1999) DNA typing of HLA class II genes (HLA-DR, -DQ and -DP) in Japanese patients with histiocytic necrotizing lymphadenitis (Kikuchi's disease). Tissue Antigens 54:246–253CrossRefPubMedGoogle Scholar
  36. Teraoka Y, Naruse TK, Oka A, Matsuzawa Y, Shiina T, Iizuka M, Iwashita K, Ozawa A, Inoko H (2000) Genetic polymorphisms in the cell growth regulated gene, SC1 telomeric of the HLA-C gene and lack of association of psoriasis vulgaris. Tissue Antigens 55:206–211CrossRefPubMedGoogle Scholar
  37. Tokunaga K, Ishikawa Y, Ogawa A, Wang H, Mitsunaga S, Moriyama S, Lin L, Bannai M, Watanabe Y, Kashiwase K, Tanaka H, Akaza T, Tadokoro K, Juji T (1997) Sequence-based association analysis of HLA class I and II alleles in Japanese supports conservation of common haplotypes. Immunogenetics 46:199–205CrossRefPubMedGoogle Scholar
  38. Wooley PH, Panayi GS, Batchelor JR (1981) Lymphocytotoxins in rheumatoid arthritis: prevalence, lymphocyte specificity, and HLA-DR antigens. Ann Rheum Dis 40:154–156PubMedGoogle Scholar
  39. Ye F, Li MS, Taylor JD, Nguyen Q, Colton HM, Casey WM, Wagner M, Weiner MP, Chen J (2001) Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum Mutat 17:305–316CrossRefPubMedGoogle Scholar
  40. Zetterquist H, Olerup O (1992) Identification of the HLA-DRB1*04, -DRB1*07, and -DRB1*09 alleles by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours. Hum Immunol 34:64–74CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Yoshiki Itoh
    • 1
  • Nobuhisa Mizuki
    • 1
  • Tsuyako Shimada
    • 2
  • Fumihiro Azuma
    • 2
  • Mitsuo Itakura
    • 3
  • Koichi Kashiwase
    • 4
  • Eri Kikkawa
    • 5
  • Jerzy K. Kulski
    • 5
  • Masahiro Satake
    • 4
  • Hidetoshi Inoko
    • 5
  1. 1.Department of Ophthalmology and Visual ScienceYokohama City University Graduate School of MedicineYokohama, KanagawaJapan
  2. 2.G&G SCIENCE Co., Ltd.FukushimaJapan
  3. 3.Division of Genetic Information, Institute for Genome ResearchThe University of TokushimaTokushimaJapan
  4. 4.Department of LaboratoryJapanese Red Cross Tokyo Metropolitan Blood CenterTokyoJapan
  5. 5.Department of Molecular Life Science, Division of Molecular Medical Science and Molecular MedicineTokai University School of MedicineKanagawaJapan

Personalised recommendations