Skip to main content

Advertisement

Log in

Differential display analysis reveals the expression of glutathione S-transferase ω and novel genes through an ITAM-containing receptor in ascidian immunocytes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The immunoreceptor tyrosine-based activation motif (ITAM) plays an important role in signal transduction through antigen receptors in mammalian lymphocytes. We previously reported that an ITAM-containing receptor, ascidian hemocyte ITAM-containing receptor 1 (AhITAMR1), exists on the hemocyte surfaces of the ascidian Halocynthia roretzi, and is involved in both phagocytosis and hemocyte aggregation. In this study, we carried out differential display screening of upregulated genes during H. roretzi hemocyte aggregation and found that at least three genes are upregulated. One encodes glutathione S-transferase ω (GSTω), while the other two encode novel proteins. The expression of all three genes was induced by treatment with a specific monoclonal antibody against AhITAMR1, while their expression was inhibited by wortmannin, BAPTA-AM, and cyclosporin A. We also found that the expression of GSTω was induced by treatment with anti-T cell receptor antibody in mouse peripheral T cells. We propose that signal transduction pathways mediated by ITAM-containing receptors are conserved from ascidian hemocytes to mammalian T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azumi K, Yokosawa H (1996) Humoral factors and cellular reactions in the biological defense of the ascidian Halocynthia roretzi. In: Söderhäll K, Iwanaga S, Vasta G (eds) New directions in invertebrates and immunity. SOS Publications, Fair Haven, pp 43–53

    Google Scholar 

  • Azumi K, Satoh N, Yokosawa H (1993) Functional and structural characterization of hemocytes of the solitary ascidian, Halocynthia roretzi. J Exp Zool 265:309–316

    Article  CAS  Google Scholar 

  • Azumi K, Kuribayashi F, Kanegasaki S, Yokosawa H (2002) Zymosan induces production of superoxide anions by hemocytes of the solitary ascidian Halocynthia roretzi. Comp Biochem Physiol 133C:567–574

    CAS  Google Scholar 

  • Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto MR, Marino R, Shida K, Ikeda M, Ikeda M, Arai M, Inoue Y, Shimizu T, Satoh N, Rokhsar DS, Du Pasquier L, Kasahara M, Satake M, Nonaka M (2003) Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: waiting for Godot. Immunogenetics 55:570–581

    Article  PubMed  CAS  Google Scholar 

  • Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J (2000) Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem 275:24798–24806

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein D, Harafuji N, Hastings K, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang H, Awazu S, Azumi K, Boore J, Branno M, Chin-bow S, De Santis R, Doyle S, Francino P, Keys D, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee B, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Sin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Dogget N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar D (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8

    Article  PubMed  CAS  Google Scholar 

  • Hata S, Azumi K, Yokosawa H (1998) Ascidian phenoloxidase: its release from hemocytes, isolation, characterization, and physiological roles. Comp Biochem Physiol 119B:769–776

    CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa G, Azumi K, Yokosawa H (2000) Involvement of tyrosine kinase and phosphatidylinositol 3-kinase in phagocytosis by ascidian hemocytes. Comp Biochem Physiol 125A:351–357

    CAS  Google Scholar 

  • Ito T, Kito K, Adati N, Mitsui Y, Hagiwara H, Sakaki Y (1994) Fluorescent differential display: arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer. FEBS Lett 351:231–236

    Article  PubMed  CAS  Google Scholar 

  • Kodym R, Calkins P, Story M (1999) The cloning and characterization of a new stress response protein. J Biol Chem 274:5131–5137

    Article  PubMed  CAS  Google Scholar 

  • Laliberte RE, Perregaux DG, Hoth LR, Rosner PJ, Jordan CK, Peese KM, Eggler JF, Dombroski MA, Geoghegan KF, Gabel CA (2003) Glutathione S-transferase omega 1–1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J Biol Chem 278:16567–16578

    Article  PubMed  CAS  Google Scholar 

  • Li Y-J, Oliveira SA, Xu P, Martin ER, Stenger JE, Scherzer CR, Hauser MA, Scott WK, Small GW, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Goetz CG, Mastaglia F, Middleton LT, Roses AD, Saunders AM, Schmechel DE, Gullans SR, Haines JL, Gilbert JR, Vance JM, Pericak-Vance MA (2003) Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 12:3259–3267

    Article  PubMed  CAS  Google Scholar 

  • Pancer Z, Amemiya CT, Ehrhardt GRA, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Azumi K, Yokosawa H (1994) Hemocyte aggregation in the solitary ascidian, Halocynthia roretzi: plasma factors, magnesium ion, and Met-Lys-bradykinin induce the aggregation. Biol Bull 186:247–253

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Azumi K, Yokosawa H (1995) A novel membrane glycoprotein involved in ascidian hemocyte aggregation and phagocytosis. Eur J Biochem 233:778–783

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Ishikawa G, Ueki K, Azumi K, Yokosawa H (1997) Cloning and tyrosine phosphorylation of a novel invertebrate immunocyte protein containing immunoreceptor tyrosine-based activation motifs. J Biol Chem 272:32006–32010

    Article  PubMed  CAS  Google Scholar 

  • Weiss A, Littman DR (1994) Signal transduction by lymphocyte antigen receptors. Cell 76:263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Seiich Tamura, Asamushi Marine Biological Station, Tohoku University for supplying fresh ascidians. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Azumi.

Additional information

The nucleotide sequence data reported in this study have been submitted to the DNA Data Bank of Japan (DDBJ) with accession numbers AB187220 for 18A-1, AB187221 for 20A, and AB187222 for 20G-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azumi, K., Sasaki, T., Okochi, K. et al. Differential display analysis reveals the expression of glutathione S-transferase ω and novel genes through an ITAM-containing receptor in ascidian immunocytes. Immunogenetics 57, 444–452 (2005). https://doi.org/10.1007/s00251-005-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0003-3

Keywords

Navigation