Skip to main content

Advertisement

Log in

The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

We are investigating the expression and linkage of major histocompatibility complex (MHC) class I genes in the duck (Anas platyrhynchos) with a view toward understanding the susceptibility of ducks to two medically important viruses: influenza A and hepatitis B. In mammals, there are multiple MHC class I loci, and alleles at a locus are polymorphic and co-dominantly expressed. In contrast, in lower vertebrates the expression of one locus predominates. Southern-blot analysis and amplification of genomic sequences suggested that ducks have at least four loci encoding MHC class I. To identify expressed MHC genes, we constructed an unamplified cDNA library from the spleen of a single duck and screened for MHC class I. We sequenced 44 positive clones and identified four MHC class I sequences, each sharing approximately 85% nucleotide identity. Allele-specific oligonucleotide hybridization to a Northern blot indicated that only two of these sequences were abundantly expressed. In chickens, the dominantly expressed MHC class I gene lies adjacent to the transporter of antigen processing (TAP2) gene. To investigate whether this organization is also found in ducks, we cloned the gene encoding TAP2 from the cDNA library. PCR amplification from genomic DNA allowed us to determine that the dominantly expressed MHC class I gene was adjacent to TAP2. Furthermore, we amplified two alleles of the TAP2 gene from this duck that have significant and clustered amino acid differences that may influence the peptides transported. This organization has implications for the ability of ducks to eliminate viral pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a, b
Fig. 7

Similar content being viewed by others

References

  • Afanassieff M, Goto RM, Ha J, Sherman MA, Zhong L, Auffray C, Coudert F, Zoorob R, Miller MM (2001) At least one class I gene in restriction fragment pattern-Y (Rfp-Y), the second MHC gene cluster in the chicken, is transcribed, polymorphic, and shows divergent specialization in antigen binding region. J Immunol 166:3324–3333

    CAS  PubMed  Google Scholar 

  • Aoyagi K, Dijkstra JM, Xia C, Denda I, Ototake M, Hashimoto K, Nakanishi T (2002) Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss). J Immunol 168:260–273

    CAS  PubMed  Google Scholar 

  • Barnes WM (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci USA 91:2216–2220

    CAS  PubMed  Google Scholar 

  • Briles WE, Goto RM, Auffray C, Miller MM (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37:408–414

    CAS  PubMed  Google Scholar 

  • Deverson EV, Leong L, Seelig A, Coadwell WJ, Tredgett EM, Butcher GW, Howard JC (1998) Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. J Immunol 160:2767–2779

    CAS  PubMed  Google Scholar 

  • Durairaj M, Sharma R, Varghese JC, Kane KP (2003) Requirement for Q226, but not multiple charged residues, in the class I MHC CD loop/D strand for TCR-activated CD8 accessory function. Eur J Immunol 33:676–684

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    PubMed  Google Scholar 

  • Fillon V, Zoorob R, Yerle M, Auffray C, Vignal A (1996) Mapping of the genetically independent chicken major histocompatibility complexes B and RFP-Y to the same microchromosome by two-color fluorescent in situ hybridization. Cytogenet Cell Genet 75:7–9

    Google Scholar 

  • Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L (1993) A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 12:4385–4396

    CAS  PubMed  Google Scholar 

  • Flajnik MF, Ohta Y, Greenberg AS, Salter-Cid L, Carrizosa A, Du Pasquier L, Kasahara M (1999) Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. J Immunol 163:3826–3833

    CAS  PubMed  Google Scholar 

  • Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebo S, Stet RJ (2003) MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55:210–219

    Article  CAS  PubMed  Google Scholar 

  • Guild BC, Strominger JL (1984) Human and murine class I MHC antigens share conserved serine 335, the site of HLA phosphorylation in vivo. J Biol Chem 259:9235–9240

    CAS  Google Scholar 

  • Guild BC, Erikson RL, Strominger JL (1983) HLA-A2 and HLA-B7 antigens are phosphorylated in vitro by Rous sarcoma virus kinase (pp60v-src) at a tyrosine residue encoded in a highly conserved exon of the intracellular domain. Proc Natl Acad Sci USA 80:2894–2898

    CAS  PubMed  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Hunt HD, Fulton JE (1998) Analysis of polymorphisms in the major expressed class I locus (B-FIV) of the chicken. Immunogenetics 47:456–467

    CAS  PubMed  Google Scholar 

  • Jarvi SI, Goto RM, Gee GF, Briles WE, Miller MM (1999) Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes. J Hered 90:152–159

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236

    CAS  PubMed  Google Scholar 

  • Kaufman J (2000) The simple chicken major histocompatibility complex: life and death in the face of pathogens and vaccines. Philos Trans R Soc Lond B Biol Sci 355:1077–1184

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J, Salomonsen J, Flajnik M (1994) Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol 6:411–424

    CAS  PubMed  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999a) Gene organization determines evolution of function in the chicken MHC. Immunol Rev 167:101–117

    CAS  PubMed  Google Scholar 

  • Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999b) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  Google Scholar 

  • Kroemer G, Zoorob R, Auffray C (1990) Structure and expression of a chicken MHC class I gene. Immunogenetics 31:405–409

    Google Scholar 

  • Kulski J, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122

    Article  CAS  PubMed  Google Scholar 

  • Lahti JM, Chen CL, Tjoelker LW, Pickel JM, Schat KA, Calnek BW, Thompson CB, Cooper MD (1991) Two distinct alpha beta T-cell lineages can be distinguished by the differential usage of T-cell receptor V β gene segments. Proc Natl Acad Sci USA 88:10956–10960

    CAS  PubMed  Google Scholar 

  • Lobigs M, Mullbacher A, Blanden RV, Hammerling GJ, Momburg F (1999) Antigen presentation in Syrian hamster cells: substrate selectivity of TAP controlled by polymorphic residues in TAP1 and differential requirements for loading of H2 class I molecules. Immunogenetics 49:931–941

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2002) The “LSGGQ” motif in each nucleotide-binding domain of human P-glycoprotein is adjacent to the opposing Walker A sequence. J Biol Chem 277:41303–41316

    Article  CAS  PubMed  Google Scholar 

  • Miller MM, Goto RM, Taylor RL, Zoorob R, Auffray C, Briles RW, Briles WE, Bloom SE (1996) Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. Proc Natl Acad Sci USA 93:3958–3962

    CAS  PubMed  Google Scholar 

  • Momburg F, Armandola EA, Post M, Hammerling GJ (1996) Residues in TAP2 peptide transporters controlling substrate specificity. J Immunol 156:1756–63

    CAS  PubMed  Google Scholar 

  • Neefjes JJ, Momburg F, Hammerling GJ (1993) Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–71

    CAS  PubMed  Google Scholar 

  • Nonaka M, Yamada-Namikawa C, Flajnik MF, Du Pasquier L (2000) Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus. Immunogenetics 51:186–192

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, Tarczy-Hornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci USA 89:10896–10899

    CAS  PubMed  Google Scholar 

  • Ohta Y, Powis SJ, Coadwell WJ, Haliniewski DE, Liu Y, Li H, Flajnik MF (1999) Identification and genetic mapping of Xenopus TAP2 genes. Immunogenetics 49:171–182

    CAS  PubMed  Google Scholar 

  • Ohta Y, McKinney EC, Criscitiello MF, Flajnik MF (2002) Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 168:771–781

    CAS  PubMed  Google Scholar 

  • Okamura K, Ototake M, Nakanishi T, Kurosawa Y, Hashimoto K (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7:777–790

    CAS  PubMed  Google Scholar 

  • Peace-Brewer AL, Tussey LG, Matsui M, Li G, Quinn DG, Frelinger JA (1996) A point mutation in HLA-A*0201 results in failure to bind the TAP complex and to present virus-derived peptides to CTL. Immunity 4:505–514

    PubMed  Google Scholar 

  • Persson B, Argos P (1994) Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J Mol Biol 237:182–192

    CAS  PubMed  Google Scholar 

  • Persson B, Argos P (1996) Topology prediction of membrane proteins. Protein Sci 5:363–371

    CAS  PubMed  Google Scholar 

  • Powis SJ, Young LL, Joly E, Barker PJ, Richardson L, Brandt RP, Melief CJ, Howard JC, Butcher GW (1996) The rat cim effect: TAP allele-dependent changes in a class I MHC anchor motif and evidence against C-terminal trimming of peptides in the ER. Immunity 4:159–165

    CAS  PubMed  Google Scholar 

  • Salter RD, Norment AM, Chen BP, Clayberger C, Krensky AM, Littman DR, Parham P (1989) Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8. Nature 338:345–347

    CAS  PubMed  Google Scholar 

  • Shiina T, Ando A, Imanishi T, Kawata H, Hanzawa K, Gojobori T, Inoko H, Watanabe S (1995) Isolation and characterization of cDNA clones for Japanese quail (Coturnix japonica) major histocompatibility complex (MhcCoja) class I molecules. Immunogenetics 42:213–216

    Google Scholar 

  • Shiina T, Oka A, Imanishi T, Hanzawa K, Gojobori T, Watanabe S, Inoko H (1999a) Multiple class I loci expressed by the quail MHC. Immunogenetics 49:456–460

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Shimizu C, Oka A, Teraoka Y, Imanishi T, Gojobori T, Hanzawa K, Watanabe S, Inoko H (1999b) Gene organization of the quail major histocompatibility complex (MhcCoja) class I gene region. Immunogenetics 49:384–394

    CAS  PubMed  Google Scholar 

  • Shum BP, Avila D, Du Pasquier L, Kasahara M, Flajnik MF (1993) Isolation of a classical MHC class I cDNA from an amphibian. Evidence for only one class I locus in the Xenopus MHC. J Immunol 151:5376–5386

    CAS  PubMed  Google Scholar 

  • Shum BP, Rajalingam R, Magor KE, Azumi K, Carr WH, Dixon B, Stet RJ, Adkison MA, Hedrick RP, Parham P (1999) A divergent non-classical class I gene conserved in salmonids. Immunogenetics 49:479–490

    CAS  PubMed  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MA, Hedrick RP, Nehring RB, Stet RJ, Secombes C, Parham P (2001) Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 166:3297–3308

    CAS  PubMed  Google Scholar 

  • Tuinen M van, Hedges SB (2001) Calibration of avian molecular clocks. Mol Biol Evol 18:206–213

    PubMed  Google Scholar 

  • Tuinen M van, Sibley CG, Hedges SB (2000) The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol Biol Evol 17:451–457

    CAS  PubMed  Google Scholar 

  • Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, Phillips JH, Lanier LL, Parham, P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751

    PubMed  Google Scholar 

  • Vega MA, Strominger JL (1989) Constitutive endocytosis of HLA class I antigens requires a specific portion of the intracytoplasmic tail that shares structural features with other endocytosed molecules. Proc Natl Acad Sci USA 86:2688–2692

    CAS  PubMed  Google Scholar 

  • Velarde G, Ford RC, Rosenberg MF, Powis SJ (2001) Three-dimensional structure of transporter associated with antigen processing (TAP) obtained by single particle image analysis. J Biol Chem 276:46054–46063

    Article  CAS  PubMed  Google Scholar 

  • Vos JC, Spee P, Momburg F, Neefjes J (1999) Membrane topology and dimerization of the two subunits of the transporter associated with antigen processing reveal a three-domain structure. J Immunol 163:6679–85

    CAS  PubMed  Google Scholar 

  • Vos JC, Reits EA, Wojcik-Jacobs E, Neefjes J (2000) Head-head/tail-tail relative orientation of the pore-forming domains of the heterodimeric ABC transporter TAP. Curr Biol 10:1-7

    Article  CAS  PubMed  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Cindy Radford for excellent laboratory assistance and Brad Magor for helpful comments on the manuscript. This work was supported by the Natural Sciences and Engineering Council of Canada and an Independent Establishment grant from the Alberta Heritage Foundation for Medical Research. K.E.M is an AHFMR scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine E. Magor.

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers AY294416–22

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesa, C.M., Thulien, K.J., Moon, D.A. et al. The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos . Immunogenetics 56, 192–203 (2004). https://doi.org/10.1007/s00251-004-0672-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0672-3

Keywords

Navigation