Skip to main content

Advertisement

Log in

Immunogenicity of Torpedo acetylcholine receptor in the context of different rat MHC class II haplotypes and non-MHC genomes

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The nicotinic acetylcholine receptor (nAChR) is the autoantigen in seropositive myasthenia gravis (MG), a T-cell-dependent B-cell-mediated autoimmune disease. The nAChR is a pentameric transmembrane receptor comprising ααβγδ chains. During early postnatal development the nAChR γ chain is replaced by the nAChR ε chain. We tested the myasthenogenicity in experimental autoimmune myasthenia gravis (EAMG) of the native nAChR derived from the electric ray Torpedo californica (T-nAChR) in various inbred and MHC -congenic rat strains. Differences in the disease course emerged dependent on the MHC haplotype and non-MHC genes. Interestingly, no tested rat strain was completely resistant to EAMG, but there were strong differences in disease severity mainly depending on the MHC haplotype. In the LEW non-MHC genome, the B-cell response and the severity of EAMG were dependent on the expressed MHC haplotype. This study underscores the influence of genetic factors on disease severity, disease course and on the degree of the emerging antibody responses in EAMG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2

References

  • Berman PW, Patrick J (1980) Experimental myasthenia gravis. A murine system. J Exp Med 151:204–223

    CAS  PubMed  Google Scholar 

  • Biesecker G, Koffler D (1988) Resistance to experimental autoimmune myasthenia gravis in genetically inbred rats. Association with decreased amounts of in situ acetylcholine receptor-antibody complexes. J Immunol 140:3406–3410

    CAS  PubMed  Google Scholar 

  • Drachman DB (1994) Myasthenia gravis. N Engl J Med 330:1797–1810

    Article  CAS  PubMed  Google Scholar 

  • Engel AG, Lambert EH, Howard FM (1977) Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin Proc 52:267–280

    CAS  PubMed  Google Scholar 

  • Gu Y, Hall ZW (1988) Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1:117–125

    CAS  PubMed  Google Scholar 

  • Lennon VA, Lindstrom JM, Seybold ME (1975) Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med 141:1365–1375

    CAS  PubMed  Google Scholar 

  • Lennon VA, Lambert EH, Leiby KR, Okarma TB, Talib S (1991) Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis. J Immunol 146:2245–2248

    CAS  PubMed  Google Scholar 

  • Lindstrom J, Walter B, Einarson B (1979) Immunochemical similarities between subunits of the acetylcholine receptor from Torpedo, Electrophorus, and mammalian muscle. Biochemistry 18:4470–4480

    CAS  PubMed  Google Scholar 

  • Missias AC, Chu GC, Klocke BJ, Sanes JR, Merlie JP (1996) Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR gamma-to-epsilon switch. Dev Biol 179:223–238

    Article  CAS  PubMed  Google Scholar 

  • Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180:871–872

    CAS  PubMed  Google Scholar 

  • Pirskanen R (1976) Genetic associations between myasthenia gravis and the HL-A system. J Neurol Neurosurg Psychiatry 39:23–33

    CAS  PubMed  Google Scholar 

  • Toyka KV, Brachman DB, Pestronk A, Kao I (1975) Myasthenia gravis: passive transfer from man to mouse. Science 190:397–399

    CAS  PubMed  Google Scholar 

  • Tzartos SJ, Kokla A, Walgrave SL, Conti-Tronconi BM (1988) Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67–76 of the alpha subunit. Proc Natl Acad Sci U S A 85:2899–2903

    CAS  PubMed  Google Scholar 

  • Tzartos SJ, Barkas T, Cung MT, Mamalaki A, Marraud M, Orlewski P, Papanastasiou D, Sakarellos C, Sakarellos-Daitsiotis M, Tsantili P, Tsikaris V (1998) Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 163:89–120

    CAS  PubMed  Google Scholar 

  • Vincent A (2002) Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2:797–804

    Article  CAS  PubMed  Google Scholar 

  • Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H, Linington C, Olsson T (1998) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273

    CAS  PubMed  Google Scholar 

  • Weissert R, de Graaf KL, Storch MK, Barth S, Linington C, Lassmann H, Olsson T (2001) MHC class II regulated central nervous system autoaggression and T-cell responses in peripheral lymphoid tissues are dissociated in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Immunol 166:7588–7599

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (SFB 510 and We 1947/4-1). This study is part of the doctoral thesis of S.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Weissert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaertner, S., de Graaf, K.L., Olsson, T. et al. Immunogenicity of Torpedo acetylcholine receptor in the context of different rat MHC class II haplotypes and non-MHC genomes. Immunogenetics 56, 61–64 (2004). https://doi.org/10.1007/s00251-004-0656-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0656-3

Keywords

Navigation