Skip to main content
Log in

Terminal deoxynucleotidyl transferases from elasmobranchs reveal structural conservation within vertebrates

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The DNA polymerase (pol) X family is an ancient group of enzymes that function in DNA replication and repair (pol β), translesion synthesis (pol λ and pol μ) and terminal addition of non-templated nucleotides. This latter terminal deoxynucleotidyl transferase (TdT) activity performs the unique function of providing diversity at coding joins of immunoglobulin and T-cell receptor genes. The first isolated full-length TdT genes from shark and skate are reported here. Comparisons with the three-dimensional structure of mouse TdT indicate structural similarity with elasmobranch orthologues that supports both a template-independent mode of replication and a lack of strong nucleotide bias. The vertebrate TdTs appear more closely related to pol μ and fungal polymerases than to pol λ and pol β. Thus, unlike other molecules of adaptive immunity, TdT is a member of an ancient gene family with a clear gene phylogeny and a high degree of similarity, which implies the existence of TdT ancestors in jawless fishes and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J (1992) VDJ recombination. Immunol Today 13:306–314

    Article  CAS  PubMed  Google Scholar 

  • Aoufouchi S, Flatter E, Dahan A, Faili A, Bertocci B, Storck S, Delbos F, Cocea L, Gupta N, Weill JC, Reynaud CA (2000) Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res 28:3684–3693

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Koonin EV (1999) DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res 27:1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Arndt JW, Gong W, Zhong X, Showalter AK, Liu J, Dunlap CA, Lin Z, Paxson C, Tsai MD, Chan MK (2001) Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. Biochemistry 40:5368–5375

    Article  CAS  PubMed  Google Scholar 

  • Bangs LA, Sanz IE, Teale JM (1991) Comparison of D, JH, and junctional diversity in the fetal, adult, and aged B cell repertoires. J Immunol 146:1996–2004

    CAS  PubMed  Google Scholar 

  • Bartl S (1998) What sharks can tell us about the evolution of MHC genes. Immunol Rev 166:317–331

    CAS  PubMed  Google Scholar 

  • Bartl S, Weissman IL (1994) The isolation of putative major histocompatibility complex gene fragments from dogfish and nurse shark. Ann N Y Acad Sci 712:346–349

    CAS  PubMed  Google Scholar 

  • Bartl S, Baish MA, Flajnik MF, Ohta Y (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159:6097–6104

    CAS  PubMed  Google Scholar 

  • Bartl S, Baish M, Weissman IL, Diaz M (2003) Did the molecules of adaptive immunity evolve from the innate immune system? Integr Comp Biol 43:338–346

    Google Scholar 

  • Beard WA, Wilson SH (2000) Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. Mutat Res 460:231–244

    Article  CAS  PubMed  Google Scholar 

  • Beard WA, Wilson SH (2001) DNA polymerases lose their grip. Nat Struct Biol 8:915–917

    Article  CAS  PubMed  Google Scholar 

  • Benedict CL, Gilfillan S, Thai TH, Kearney JF (2000) Terminal deoxynucleotidyl transferase and repertoire development. Immunol Rev 175:150–157

    Article  CAS  PubMed  Google Scholar 

  • Benedict CL, Gilfillan S, Kearney JF (2001) The long isoform of terminal deoxynucleotidyl transferase enters the nucleus and, rather than catalyzing nontemplated nucleotide addition, modulates the catalytic activity of the short isoform. J Exp Med 193:89–99

    Article  CAS  PubMed  Google Scholar 

  • Bentolila LA, Fanton d’Andon M, Nguyen QT, Martinez O, Rougeon F, Doyen N (1995) The two isoforms of mouse terminal deoxynucleotidyl transferase differ in both the ability to add N regions and subcellular localization. EMBO J 14:4221–4229

    CAS  PubMed  Google Scholar 

  • Bernstein RM, Schluter SF, Bernstein H, Marchalonis JJ (1996) Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc Natl Acad Sci USA 93:9454–9459

    Article  CAS  PubMed  Google Scholar 

  • Bertocci B, De Smet A, Flatter E, Dahan A, Bories JC, Landreau C, Weill JC, Reynaud CA (2002) Cutting edge: DNA polymerases mu and lambda are dispensable for Ig gene hypermutation. J Immunol 168:3702–3706

    CAS  PubMed  Google Scholar 

  • Bogue M, Gilfillan S, Benoist C, Mathis D (1992) Regulation of N-region diversity in antigen receptors through thymocyte differentiation and thymus ontogeny. Proc Natl Acad Sci USA 89:11011–11015

    CAS  PubMed  Google Scholar 

  • Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11:68–76

    CAS  PubMed  Google Scholar 

  • Boudsocq F, Ling H, Yang W, Woodgate R (2002) Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass. DNA Repair (Amst) 1:343–358

    Article  Google Scholar 

  • Brautigam CA, Steitz TA (1998) Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 8:54–63

    Article  CAS  PubMed  Google Scholar 

  • Caldecott KW, Tucker JD, Stanker LH, Thompson LH (1995) Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res 23:4836–4843

    CAS  PubMed  Google Scholar 

  • Callebaut I, Mornon JP (1997) From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett 400:25–30

    CAS  PubMed  Google Scholar 

  • Canestro C, Bassham S, Postlethwait JH (2003) Seeing chordate evolution through the Ciona genome sequence. Genome Biol 4:208

    Article  PubMed  Google Scholar 

  • Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G (1997) Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem 272:23970–23975

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Alt FW (1993) Gene rearrangement and B-cell development. Curr Opin Immunol 5:194–200

    Article  CAS  PubMed  Google Scholar 

  • Cherrier M, Cardona A, Rosinski-Chupin I, Rougeon F, Doyen N (2002) Substantial N diversity is generated in T cell receptor alpha genes at birth despite low levels of terminal deoxynucleotidyl transferase expression in mouse thymus. Eur J Immunol 32:3651–3656

    Article  CAS  PubMed  Google Scholar 

  • Davis MM (1990) T cell receptor gene diversity and selection. Annu Rev Biochem 59:475–496

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Delarue M, Boule JB, Lescar J, Expert-Bezancon N, Jourdan N, Sukumar N, Rougeon F, Papanicolaou C (2002) Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J 21:427–439

    Article  CAS  PubMed  Google Scholar 

  • De Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J (1994) Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138:15–24

    PubMed  Google Scholar 

  • Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ (2002) Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 21:3863–3872

    Article  CAS  PubMed  Google Scholar 

  • Desiderio SV, Yancopoulos GD, Paskind M, Thomas E, Boss MA, Landau N, Alt FW, Baltimore D (1984) Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 311:752–755

    CAS  PubMed  Google Scholar 

  • Diaz M, Stanfield RL, Greenberg AS, Flajnik MF (2002) Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 54:501–512

    Article  CAS  PubMed  Google Scholar 

  • Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 24:2488–2497

    Article  CAS  PubMed  Google Scholar 

  • Doublie S, Sawaya MR, Ellenberger T (1999) An open and closed case for all polymerases. Struct Fold Des 7:R31–R35

    CAS  Google Scholar 

  • Doyen N, d’Andon MF, Bentolila LA, Nguyen QT, Rougeon F (1993) Differential splicing in mouse thymus generates two forms of terminal deoxynucleotidyl transferase. Nucleic Acids Res 21:1187–1191

    CAS  PubMed  Google Scholar 

  • Du Pasquier L (1993) Phylogeny of B-cell development. Curr Opin Immunol 5:185–193

    Article  PubMed  Google Scholar 

  • Feeney AJ (1990) Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med 172:1377–1390

    CAS  PubMed  Google Scholar 

  • Feeney AJ (1992) Comparison of junctional diversity in the neonatal and adult immunoglobulin repertoires. Int Rev Immunol 8:113–122

    CAS  PubMed  Google Scholar 

  • Flajnik MF, Rumfelt LL (2000) The immune system of cartilaginous fish. Curr Top Microbiol Immunol 248:249–270

    CAS  PubMed  Google Scholar 

  • Friedberg EC, Wagner R, Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296:1627–1630

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Diaz M, Bebenek K, Sabariegos R, Dominguez O, Rodriguez J, Kirchhoff T, Garcia-Palomero E, Picher AJ, Juarez R, Ruiz JF, Kunkel TA, Blanco L (2002) DNA polymerase lambda, a novel DNA repair enzyme in human cells. J Biol Chem 277:13184–13191

    Article  CAS  PubMed  Google Scholar 

  • Gilfillan S, Benoist C, Mathis D (1995) Mice lacking terminal deoxynucleotidyl transferase: adult mice with a fetal antigen receptor repertoire. Immunol Rev 148:201–219

    CAS  PubMed  Google Scholar 

  • Golub R, Fellah JS, Charlemagne J (1997) Structure and diversity of the heavy chain VDJ junctions in the developing Mexican axolotl. Immunogenetics 46:402–409

    CAS  PubMed  Google Scholar 

  • Goodman MF (2002) Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71:17–50

    Article  CAS  PubMed  Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    CAS  PubMed  Google Scholar 

  • Greenhalgh P, Steiner LA (1995) Recombination activating gene 1 (Rag1) in zebrafish and shark. Immunogenetics 41:54–54

    CAS  PubMed  Google Scholar 

  • Hansen JD (1997) Characterization of rainbow trout terminal deoxynucleotidyl transferase structure and expression. TdT and RAG1 co-expression define the trout primary lymphoid tissues. Immunogenetics 46:367–375

    CAS  PubMed  Google Scholar 

  • Harding FA, Amemiya CT, Litman RT, Cohen N, Litman GW (1990) Two distinct immunoglobulin heavy chain isotypes in a primitive, cartilaginous fish, Raja erinacea. Nucleic Acids Res 18:6369–6376

    CAS  PubMed  Google Scholar 

  • Hawke NA, Yoder JA, Litman GW (1999) Expanding our understanding of immunoglobulin, T-cell antigen receptor, and novel immune-type receptor genes: a subset of the immunoglobulin gene superfamily. Immunogenetics 50:124–133

    CAS  PubMed  Google Scholar 

  • Hedges SB (2001) Molecular evidence for the early history of living vertebrates. In: Ahlberg PE (ed) Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor & Francis, London, pp 119–134

  • Hinds-Frey KR, Nishikata H, Litman RT, Litman GW (1993) Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 178:815–824

    CAS  PubMed  Google Scholar 

  • Hohman VS, Schluter SF, Marchalonis JJ (1992) Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains. Proc Natl Acad Sci USA 89:276–280

    CAS  PubMed  Google Scholar 

  • Holm L, Sander C (1995) DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci 20:345–347

    Article  CAS  PubMed  Google Scholar 

  • Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25:143–147

    Article  CAS  PubMed  Google Scholar 

  • Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    Google Scholar 

  • Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP (2002) Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 16:583–593

    Article  CAS  PubMed  Google Scholar 

  • Kandil E, Namikawa C, Nonaka M, Greenberg AS, Flajnik MF, Ishibashi T, Kasahara M (1996) Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates. Implications for the origin of MHC class I-restricted antigen presentation. J Immunol 156:4245–4253

    CAS  PubMed  Google Scholar 

  • Kerfourn F, Charlemagne J, Fellah JS (1996) The structure, rearrangement, and ontogenic expression of DB and JB gene segments of the Mexican axolotl T-cell antigen receptor beta chain (TCRB). Immunogenetics 44:275–285

    Article  CAS  PubMed  Google Scholar 

  • Koiwai O, Yokota T, Kageyama T, Hirose T, Yoshida S, Arai K (1986) Isolation and characterization of bovine and mouse terminal deoxynucleotidyltransferase cDNAs expressible in mammalian cells. Nucleic Acids Res 14:5777–5792

    CAS  PubMed  Google Scholar 

  • Kokubu F, Litman R, Shamblott MJ, Hinds K, Litman GW (1988) Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 7:3413–3422

    CAS  PubMed  Google Scholar 

  • Komori T, Pricop L, Hatakeyama A, Bona CA, Alt FW (1996) Repertoires of antigen receptors in Tdt congenitally deficient mice. Int Rev Immunol 13:317–325

    CAS  PubMed  Google Scholar 

  • Krishnan VV, Thornton KH, Thelen MP, Cosman M (2001) Solution structure and backbone dynamics of the human DNA ligase IIIalpha BRCT domain. Biochemistry 40:13158–13166

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, Lindahl T (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J 15:6662–6670

    CAS  PubMed  Google Scholar 

  • Lee A, Hsu E (1994) Isolation and characterization of the Xenopus terminal deoxynucleotidyl transferase. J Immunol 152:4500–4507

    CAS  PubMed  Google Scholar 

  • Lieber MR, Chang CP, Gallo M, Gauss G, Gerstein R, Islas A (1994) The mechanism of V(D)J recombination: site-specificity, reaction fidelity and immunologic diversity. Semin Immunol 6:143–153

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17:109–147

    CAS  PubMed  Google Scholar 

  • Mahajan KN, Gangi-Peterson L, Sorscher DH, Wang J, Gathy KN, Mahajan NP, Reeves WH, Mitchell BS (1999) Association of terminal deoxynucleotidyl transferase with Ku. Proc Natl Acad Sci USA 96:13926–13931

    Article  CAS  PubMed  Google Scholar 

  • Marchalonis JJ, Adelman MK, Zeitler BJ, Sarazin PM, Jaqua PM, Schluter SF (2001) Evolutionary factors in the emergence of the combinatorial germline antibody repertoire. Adv Exp Med Biol 484:13–30

    CAS  PubMed  Google Scholar 

  • Matis LA (1988) Diversity and antigen specificity of the T cell receptor. Curr Opin Immunol 1:84–87

    Article  CAS  PubMed  Google Scholar 

  • Mickelsen S, Snyder C, Trujillo K, Bogue M, Roth DB, Meek K (1999) Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase. J Immunol 163:834–843

    CAS  PubMed  Google Scholar 

  • Miracle AL, Anderson MK, Litman RT, Walsh CJ, Luer CA, Rothenberg EV, Litman GW (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13:567–580

    CAS  PubMed  Google Scholar 

  • Murakumo Y (2002) The property of DNA polymerase zeta: REV7 is a putative protein involved in translesion DNA synthesis and cell cycle control. Mutat Res 510:37–44

    Article  CAS  PubMed  Google Scholar 

  • Nash RA, Caldecott KW, Barnes DE, Lindahl T (1997) XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36:5207–5211

    Article  CAS  PubMed  Google Scholar 

  • Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523

    CAS  PubMed  Google Scholar 

  • Ohta Y, Haliniewski DE, Hansen J, Flajnik MF (1999) Isolation of transporter associated with antigen processing genes, TAP1 and TAP2, from the horned shark Heterodontus francisci. Immunogenetics 49:981–986

    Google Scholar 

  • Ohta Y, McKinney EC, Criscitiello MF, Flajnik MF (2002) Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 168:771–781

    CAS  PubMed  Google Scholar 

  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766

    CAS  PubMed  Google Scholar 

  • Patel HM, Hsu E (1997) Abbreviated junctional sequences impoverish antibody diversity in urodele amphibians. J Immunol 159:3391–3399

    CAS  PubMed  Google Scholar 

  • Pelletier H (1994) Polymerase structures and mechanism. Science 266:2025–2026

    CAS  PubMed  Google Scholar 

  • Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J (1994) Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264:1891–1903

    Google Scholar 

  • Peterson RC, Cheung LC, Mattaliano RJ, White ST, Chang LM, Bollum FJ (1985) Expression of human terminal deoxynucleotidyl transferase in Escherichia coli. J Biol Chem 260:10495–10502

    CAS  PubMed  Google Scholar 

  • Rasmussen AS, Arnason U (1999a) Molecular studies suggest that cartilaginous fishes have a terminal position in the piscine tree. Proc Natl Acad Sci USA 96:2177–2182

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen AS, Arnason U (1999b) Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. J Mol Evol 48:118–123

    CAS  PubMed  Google Scholar 

  • Rast JP, Litman GW (1994) T-cell receptor gene homologues are present in the most primitive jawed vertebrates. Proc Natl Acad Sci USA 91:9248–9252

    CAS  PubMed  Google Scholar 

  • Reynaud CA, Frey S, Aoufouchi S, Faili A, Bertocci B, Dahan A, Flatter E, Delbos F, Storck S, Zober C, Weill JC (2001) Transcription, beta-like DNA polymerases and hypermutation. Philos Trans R Soc Lond B Biol Sci 356:91–97

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JF, Dominguez O, Lain de Lera T, Garcia-Diaz M, Bernad A, Blanco L (2001) DNA polymerase mu, a candidate hypermutase? Philos Trans R Soc Lond B Biol Sci 356:99–109

    Article  CAS  PubMed  Google Scholar 

  • Rumfelt LL, Avila D, Diaz M, Bartl S, McKinney EC, Flajnik MF (2001) A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc Natl Acad Sci USA 98:1775–1780

    CAS  PubMed  Google Scholar 

  • Rumfelt LL, McKinney EC, Taylor E, Flajnik MF (2002) The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56:130–148

    Article  CAS  PubMed  Google Scholar 

  • Sakon J, Liao HH, Kanikula AM, Benning MM, Rayment I, Holden HM (1993) Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-Å resolution. Biochemistry 32:11977–11984

    CAS  PubMed  Google Scholar 

  • Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J (1994) Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 264:1930–1935

    CAS  PubMed  Google Scholar 

  • Schluter SF, Marchalonis JJ (2003) Cloning of shark RAG2 and characterization of the RAG1/RAG2 gene locus. FASEB J 17:470–472

    CAS  PubMed  Google Scholar 

  • Schwager J, Burckert N, Courtet M, Du Pasquier L (1991) The ontogeny of diversification at the immunoglobulin heavy chain locus in Xenopus. EMBO J 10:2461–2470

    CAS  PubMed  Google Scholar 

  • Shamblott MJ, Litman GW (1989a) Complete nucleotide sequence of primitive vertebrate immunoglobulin light chain genes. Proc Natl Acad Sci USA 86:4684–4688

    CAS  PubMed  Google Scholar 

  • Shamblott MJ, Litman GW (1989b) Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J 8:3733–3739

    CAS  PubMed  Google Scholar 

  • Sinkora M, Sun J, Sinkorova J, Christenson RK, Ford SP, Butler JE (2003) Antibody repertoire development in fetal and neonatal piglets. VI. B cell lymphogenesis occurs at multiple sites with differences in the frequency of in-frame rearrangements. J Immunol 170:1781–1788

    CAS  PubMed  Google Scholar 

  • Sutton MD, Walker GC (2001) Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci USA 98:8342–8349

    Article  CAS  PubMed  Google Scholar 

  • Thai TH, Purugganan MM, Roth DB, Kearney JF (2002) Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3:457–462

    CAS  PubMed  Google Scholar 

  • Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3:531–539

    CAS  PubMed  Google Scholar 

  • VanDyk L, Meek K (1992) Assembly of IgH CDR3: mechanism, regulation, and influence on antibody diversity. Int Rev Immunol 8:123–133

    CAS  PubMed  Google Scholar 

  • Willerford DM, Swat W, Alt FW (1996) Developmental regulation of V(D)J recombination and lymphocyte differentiation. Curr Opin Genet Dev 6:603–609

    Article  CAS  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    CAS  PubMed  Google Scholar 

  • Yang B, Gathy KN, Coleman MS (1995) T-cell specific avian TdT: characterization of the cDNA and recombinant enzyme. Nucleic Acids Res 23:2041–2048

    CAS  PubMed  Google Scholar 

  • Yoder JA, Litman GW (2000) Immune-type diversity in the absence of somatic rearrangement. Curr Top Microbiol Immunol 248:271–282

    Google Scholar 

  • Zhang X, Morera S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA, Sternberg MJ, Lindahl T, Freemont PS (1998) Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. EMBO J 17:6404–6411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 9605-ARG-0009 to SB from the North Carolina Biotechnology Center and grants R37 AI23338 to GWL and RR06603 to MF from the National Institutes of Health. The sequences reported here have been deposited in the GenBank database as accession numbers AY437557 (shark TdT) and AY437558 (skate TdT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Bartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartl, S., Miracle, A.L., Rumfelt, L.L. et al. Terminal deoxynucleotidyl transferases from elasmobranchs reveal structural conservation within vertebrates. Immunogenetics 55, 594–604 (2003). https://doi.org/10.1007/s00251-003-0608-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-003-0608-3

Keywords

Navigation