Skip to main content
Log in

Brownian dynamics simulations of fluorescence fluctuation spectroscopy

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract.

We have developed a program for the simulation of the fluorescence fluctuations as detected from highly diluted samples of (bio)molecules. The model is applied to translational diffusion and takes into account the hydrodynamic interactions. The solution concentration is kept constant by assuming periodic boundary conditions and spans here the range 0.5<C<10 nM. We show that the fluorescence correlation functions can be accurately computed on systems of limited size (a few molecules per simulation box) by simulating for a total time ~100–300 times the diffusion relaxation time of the fluorescence autocorrelation function. The model is applied also to the simulation of the scanning fluorescence correlation spectroscopy (FCS) and of the photon counting histograms for the confocal collection configuration. Scanning FCS simulations of highly diluted samples (C≈0.5 nM) show anticorrelation effects in the autocorrelation functions of the fluorescence signal that are less evident for higher concentrations. We suggest here that this effect may be due to the non-uniform occupancy of the scanning area by the fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Revised version: 12 October 2000

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huertas de la Torre, M., Forni, R. & Chirico, G. Brownian dynamics simulations of fluorescence fluctuation spectroscopy. Eur Biophys J 30, 129–139 (2001). https://doi.org/10.1007/s002490000117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002490000117

Navigation