Skip to main content
Log in

On the role of calcium diffusion and its rapid buffering in intraflagellar signaling

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have considered the realistic mechanism of rapid Ca2+ (calcium ion) buffering within the wave of calcium ions progressing along the flagellar axoneme. This buffering is an essential part of the Ca2+ signaling pathway aimed at controlling the bending dynamics of flagella. It is primarily achieved by the mobile region of calmodulin molecules and by stationary calaxin, as well as by the part of calmodulin bound to calcium/calmodulin-dependent kinase II and kinase C. We derived and elaborated a model of Ca2+ diffusion within a signaling wave in the presence of these molecules which rapidly buffer Ca2+. This approach has led to a single nonlinear transport equation for the Ca2+ wave that contains the effects brought about by both as necessary buffers for signaling. The presence of mobile buffer calmodulin gives rise to a transport equation that is not strictly diffusive but also exhibits a sink-like effect. We solved straightforwardly the final transport equation in an analytical framework and obtained the implied function of calcium concentration. The effective diffusion coefficient depends on local Ca2+ concentration. It is plausible that these buffers' presence can impact Ca2+ wave speed and shape, which are essential for decoding Ca2+ signaling in flagella. We present the solution of the transport equation for a few specified cases with physiologically reasonable sets of parameters involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Our paper is theoretical work so there are no experimental data.

References

  • Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, Kaupp UB (2012) The rate of change in Ca2+ concentration controls sperm chemotaxis. J Cell Biol 196(5):653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797(6–7):595–606

    Article  CAS  PubMed  Google Scholar 

  • Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Poly Sci 30(11):1049–1118

    Article  CAS  Google Scholar 

  • Eakins BB, Patel SD, Tuszynski JA (2021) Modeling microtubule counterion distributions and conductivity using Poisson-Boltzmann equation. Front Mol Biosci 8:650757

    Article  PubMed  PubMed Central  Google Scholar 

  • Faas GC, Raghavachari S, Lisman JE, Mody I (2011) Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14(3):301–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcke M (2004) Reading the patterns in living cells —the physics of Ca2+ signaling. Adv Phys 53(3):255–440

    Article  CAS  Google Scholar 

  • Forest A, Swulius MT, Tse JKY, Bradshaw JM, Gaertner T, Waxham MN (2008) Role of the N- and C-lobes of calmodulin in the activation of Ca2+/calmodulin-dependent protein kinase II. Biochem 47(40):10587–10599

    Article  CAS  Google Scholar 

  • Friesen DE, Craddock TJA, Priel A, Tuszynski JA (2014) Cytoskeletal electrostatic and ionic conduction effects in the cell. In: Fels D, Cifra M, Scholkmann F (eds) Fields of the cell. Research Signpost, Thiruvananthapuram, pp 247–270

    Google Scholar 

  • Gongadze E, van Rienen U, Kralj-Iglič V, Iglič A (2013) Spatial variation of permittivity of an electrolyte solution in contact with a charged metal surface: a mini review. Comput Methods Biomech Biomed Eng 16(5):463–480

    Article  CAS  Google Scholar 

  • Hoffman L, Chandrasekar A, Wang X, Putkey JA, Waxham MN (2014) Neurogranin alters the structure and calcium binding properties of calmodulin. J Biol Chem 289(21):14644–14655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglič A, Gongadze E, Bohinc K (2010) Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 79(2):223–227

    Article  PubMed  Google Scholar 

  • Kupferman R, Mitra PP, Hohenberg PC, Wang SS (1997) Analytical calculation of intracellular calcium wave characteristics. Biophys J 72(6):2430–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda Y, Keneko S, Yoshimura Y, Nozawa S, Mikoshiba K (1999) Are there inositol 1,4,5-triphosphate (IP3) receptors in human sperm? Life Sci 65(2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Lindemann CB, Leich KA (2016) Functional anatomy of the mammalian sperm flagellum. Cytoskeleton 73:652–669

    Article  CAS  PubMed  Google Scholar 

  • Manning GS (2011) A counterion condensation theory for the relaxation, rise, and frequency dependence of the parallel polarization of rodlike polyelectrolytes. Eur Phys J E 34:1–7

    Article  CAS  PubMed  Google Scholar 

  • Miller MR, Kenny SJ, Mannowetz N, Mansell SA, Wojcik M, Mendoza S, Zucker RS, Xu K, Lishko PV (2018) Asymmetrically positioned flagellar control units regulate human sperm rotation. Cell Rep 4(24):2606–2613

    Article  Google Scholar 

  • Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, Tanokura M, Inaba K (2012) Calaxin drives sperm chemo-taxis by Ca2+ medicated direct modulation of a dynein motor. PNAS 109(50):20497–20502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64(1):77–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, Yunus J (2017) Solitonic conduction of electrotonic signals in neuronal branchlets with polarized microstructure. Sci Rep 7:2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saggiorato G, Alvarez L, Jikeli JF, Kaupp UB, Gompper G, Elgeti J (2017) Human sperm steer with second harmonics of the flagellar beat. Nat Commun 8(1):1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanabria H, Digman MA, Gratton E, Waxham MN (2008) Spatial diffusivity and availability of intracellular calmodulin. Biophys J 95(12):6002–6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Shiba K, Nakamura A, Kawano N, Satouh Y, Yamaguchi H, Morikawa M, Shibata D, Yanase R, Jokura K, Nomura M, Miyado M, Takada S, Ueno H, Nonaka S, Baba T, Ikawa M, Kikkawa M, Miyado K, Inaba K (2019) Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol 20(2):226

    Article  Google Scholar 

  • Satarić MV, Bednar N, Satarić BM, Stojanović G (2009a) Actin filaments as nonlinear RLC transmission lines. Int J Mod Phys B 23:4697–4711

    Article  Google Scholar 

  • Satarić MV, Ilić D, Ralević N, Tuszynski JA (2009b) A nonlinear model of ionic wave propagation along microtubules. Eur Biophys J 38:637–647

    Article  PubMed  Google Scholar 

  • Satarić MV, Nemeš T, Sekulić D, Tuszynski JA (2019) How signals of calcium ions initiate the beats of cilia and flagella. BioSystems 182:42–51

    Article  PubMed  Google Scholar 

  • Satir P, Christiansen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  CAS  PubMed  Google Scholar 

  • Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Guo W (2018) Ion permeability of a microtubule in neuron environment. J Phys Chem Lett 9:2009–2014

    Article  CAS  PubMed  Google Scholar 

  • Shiba K, Baba SA, Fujiwara E, Inaba K (2020) Calaxin is essential for the transmission of Ca2+ dependent asymmetric waves in sperm flagella. bioRxiv. https://doi.org/10.1101/2020.09.22.309153

    Article  Google Scholar 

  • Srivastava N, Pande M (2016) Mitochondrion: Features, functions and comparative analysis of specific probes in detecting sperm cell damages. Asian Pac J Rep 5(6):445–452

    Article  Google Scholar 

  • Stepanek L, Pigino G (2016) Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352(6286):721–724

    Article  CAS  PubMed  Google Scholar 

  • Thurley K, Skupin A, Thul R, Falcke M (2012) Fundamental properties of Ca2+ signals. Biochim Biophys Acta 1820(8):1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva Y, Volynski KE (2015) Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00239

    Article  PubMed  PubMed Central  Google Scholar 

  • White D, de Lamirande E, Gagnon C (2007) Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. J Exp Biol 210(22):4053–4064

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Bers DM (2007) Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium 41(4):354–364

    Article  Google Scholar 

  • Yamaguchi H, Morikawa M, Kikkawa M (2023) Calaxin stabilizes the docking of outer arm dyneins onto ciliary doublet microtubule in vertebrates. Elife 12:e84860

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Li Z, Ping P, Wang G, Yuan X, Sun F (2018) Outer dense fibers stabilize the axoneme to maintain sperm motility. J Cell Mol Med 22(3):1755–1768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Department of Fundamental Sciences at the Faculty of Technical Sciences at the University of Novi Sad for the project “APPLICATION OF FUNDAMENTAL DISCIPLINES IN TECHNICAL AND INFORMATION SCIENCES”. M. Satarić is primarily supported by funding from the Serbian Academy of Sciences and Arts, personal grant No. Ф134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nemeš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Starting from Eq. (38) it simply follows.

$$d\Omega =-\nu \left(\frac{{\theta }^{2}+1}{{\theta }^{2}}\right)d\theta ,$$
(74)

so that the first integral reads

$$\Omega =-\nu \left(\theta -\frac{1}{\theta }\right)+{const}_{1}.$$
(75)

If we impose the initial condition \(\Omega =0\) for \(\theta ={\theta }_{\mathrm{min}}\), it yields

$$\Omega =\frac{d\theta }{d\zeta }=\nu \left(\frac{1}{\theta }-\theta +{\theta }_{\mathrm{min}}-\frac{1}{{\theta }_{\mathrm{min}}}\right).$$
(76)

\({\theta }_{min}\) follows from minimal (basal-0.1 \(\mathrm{\mu M}\)) Ca2+ concentration in flagellum

$${\theta }_{\mathrm{min}}=\frac{5+0.1}{\sqrt{5\cdot 10}}=0.72.$$
(77)

By rearranging the last relation we obtain

$$\int \frac{d\theta }{{\left(\theta +\rho \right)}^{2}-{a}^{2}}=-\nu \zeta +{const}_{2};$$
(78)
$$\rho =\frac{1}{2}\left(\frac{1}{{\theta }_{\mathrm{min}}}-{\theta }_{\mathrm{min}}\right); a=\sqrt{1+{\rho }^{2}}.$$
(79)

Introducing a new variable \(s\)

$$s=\theta +\rho ; ds=d\theta ,$$
(80)

and factorizing the integrand in Eq. (78) we eventually get

$${\left(\theta +\rho +a\right)}^{b+1}{\left(\theta +\rho -a\right)}^{1-b}={const}_{2}\cdot {e}^{-2\nu \zeta }.$$
(81)

The constant of integration could be obtained from condition \(\theta ={\theta }_{\mathrm{max}}\) for \(\zeta =0\), where \({\theta }_{\mathrm{max}}\) represents the amplitude of Ca2+ concentration in the flagellum.

Appendix 2

We seek the solution of linear equation, Eq. (35), in the standard form

$$\Omega \left(\theta \right)=u\left(\theta \right)\cdot v\left(\theta \right),$$
(82)

and we get

$$v\left(\theta \right)=\frac{{\theta }^{2}}{{\theta }^{2}+\gamma };\qquad u\left(\theta \right)=-\nu \left(\theta -\frac{\delta }{\theta }\right)+{const}_{1}.$$
(83)

Inserting these functions in Eq. (82) and imposing the initial condition \(\Omega =0\) for \(\theta ={\theta }_{\mathrm{min}}\), we get

$$\Omega =\nu \frac{{\theta }^{2}}{{\theta }^{2}+\gamma }\left(\frac{\delta -{\theta }^{2}}{\theta }-\varepsilon \right); \qquad\varepsilon =\frac{\delta -{\theta }_{\mathrm{min}}^{2}}{{\theta }_{\mathrm{min}}}.$$
(84)

Since \(\Omega =\frac{d\theta }{d\zeta }\) it safely follows from Eq. (84)

$$\int \frac{d\theta \left({\theta }^{2}+\gamma \right)}{\theta \left({\theta }^{2}+\varepsilon \theta -\delta \right)}=-\nu \zeta +{const}_{2}.$$
(85)

By factorizing the above integrand

$$\frac{{\theta }^{2}+\gamma }{\theta ({\theta }^{2}+\varepsilon \theta -\delta )}=\frac{p}{\theta }+\frac{q}{\theta -{\theta }_{1}}+\frac{r}{\theta -{\theta }_{2}};\qquad {\theta }_{1/2}=\frac{-\varepsilon \pm \sqrt{{\varepsilon }^{2}+4\delta }}{2},$$
(86)

we get the linear system of three algebraic equations for parameters \(p\), \(q\), \(r\) as follows:

$$\begin{array}{c}p+q+r=1 \\ p\left({\theta }_{1}+{\theta }_{2}\right)+q{\theta }_{2}+r{\theta }_{1}=0\\ p{\theta }_{1}{\theta }_{2}=\gamma ,\end{array}$$
(87)

with corresponding solutions:

$$p=-\frac{\gamma }{\delta };\qquad q=1+\frac{\gamma }{\delta }-r;\qquad r=\frac{\frac{\gamma }{\delta }{\theta }_{1}-{\theta }_{2}}{{\left({\varepsilon }^{2}+4\delta \right)}^\frac{1}{2}}.$$
(88)

The final solution of Eq. (85) now reads:

$${\theta }^{p}{\left(\theta -{\theta }_{1}\right)}^{q}{\left(\theta -{\theta }_{2}\right)}^{r}={{const}_{2}\cdot e}^{-\nu \zeta }.$$
(89)

The value of \({const}_{2}\) can be assessed from the condition \(\theta ={\theta }_{\mathrm{max}}\) for \(\zeta =0\) along with the set of specified parameters involved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satarić, M.V., Nemeš, T. On the role of calcium diffusion and its rapid buffering in intraflagellar signaling. Eur Biophys J 52, 705–720 (2023). https://doi.org/10.1007/s00249-023-01685-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01685-6

Keywords