Skip to main content
Log in

Rethinking the protein folding problem from a new perspective

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

One of the main concerns of Anfinsen was to reveal the connection between the amino-acid sequence and their biologically active conformation. This search gave rise to two crucial questions in structural biology, namely, why the proteins fold and how a sequence encodes its folding. As to the why, he proposes a plausible answer, namely, the thermodynamic hypothesis. As to the how, this remains an unsolved challenge. Consequently, the protein folding problem is examined here from a new perspective, namely, as an ‘analytic whole’. Conceiving the protein folding in this way enabled us to (i) examine in detail why the force-field-based approaches have failed, among other purposes, in their ability to predict the three-dimensional structure of a protein accurately; (ii) propose how to redefine them to prevent these shortcomings, and (iii) conjecture on the origin of the state-of-the-art numerical-methods success to predict the tridimensional structure of proteins accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The manuscript has no data available.

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  • Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29:205–300

    Article  CAS  PubMed  Google Scholar 

  • Arnautova YA, Jagielska A, Scheraga HAA (2006) new force field (ECEPP-05) for peptides, proteins and organic molecules. J Phys Chem B 110:5025–5044

    Article  CAS  PubMed  Google Scholar 

  • Best RB (2019) Atomistic force fields for proteins. Methods Mol Biol 2022:3–19

    Article  CAS  PubMed  Google Scholar 

  • Billeter M, Wagner G, Wüthrich K (2008) Solution NMR structure determination of proteins revisited. J Biomol NMR 42:155–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell TL, Johnson LN (1976) Protein Crystallography. Academic Press, New York

    Google Scholar 

  • Buel GR, Walters KJ (2022) Can AlphaFold2 predict the impact of missense mutations on structure? Nat Struct Mol Biol 29:1–2

    Article  CAS  PubMed  Google Scholar 

  • Callaway E (2020) Revolutionary cryo-EM is taking over structural biology. Nature 578(7794):201

    Article  CAS  PubMed  Google Scholar 

  • Callaway E (2022) Alpha Fold’s new rival? Meta AI predicts shape of 600 million proteins. Nature 611:211–212

    Article  CAS  PubMed  Google Scholar 

  • Chang H (2021) Presentist history for pluralist science. J Gen Philos Sci 52:97–114

    Article  Google Scholar 

  • Clementi C (2021) Fast track to structural biology. Nat Chem 13:1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Cramer P (2021) AlphaFold2 and the future of structural biology. Nat Struct Mol Biol 28:704–705

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE (1978) Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol 33:231–297

    Article  CAS  PubMed  Google Scholar 

  • Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  • Diacu F (1996) The solution of the n-body problem. Mathematical Intell 18:66–70

    Article  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7154

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Ozkan SB, Weikl TR, Chodera JD, Voelz VA (2007) The protein folding problem: when will it be solved? Curr Opin Struct Biol 17:342–346

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Ozkan BS, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  • Dolenc J, Haywood EJ, Zhu T, Smith LJ (2022) Backbone N-amination promotes the folding of β-hairpin peptides via a network of hydrogen bonds. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.2c00516

    Article  PubMed  PubMed Central  Google Scholar 

  • Domingo J, Baeza-Centurion P, Lehner B (2019) The causes and consequences of genetic interactions (epistasis). Annu Rev Genomics Hum Genet 20:433–460

    Article  CAS  PubMed  Google Scholar 

  • Einstein A, Infeld L (1961) The evolution of physics. Simon and Schuster, Inc, New York, p 244

    Google Scholar 

  • Ejtehadi MR, Avall SP, Plotkin SS (2004) Three-body interactions improve the prediction of rate and mechanism in protein folding models. Proc Natl Acad Sci USA 101:15088–15093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein AV (2018) 50+ years of protein folding. Biochemistry (mosc) 83(Suppl 1):S3–S18

    Article  CAS  PubMed  Google Scholar 

  • Georgoulia PS, Glykos NM (2019) Molecular simulation of peptides coming of age: accurate prediction of folding, dynamics and structures. Arch Biochem Biophys 664:76–88

    Article  CAS  PubMed  Google Scholar 

  • Gnanakaran S, García AE (2005) Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures. Proteins 59:773–782

    Article  CAS  PubMed  Google Scholar 

  • Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu KY, García AE (2003) Peptide folding simulations. Curr Opin Struct Biol 13:168–174

    Article  CAS  PubMed  Google Scholar 

  • Go N (1983) Theoretical studies of protein folding. Annu Rev Biophys Bioeng 12:183–210

    Article  CAS  PubMed  Google Scholar 

  • Gómez RJ (1998). In: Orilia F, Rapaport W (eds) Leibniz’s Spark of Kant’s Great Light, chapter 14 in ‘Thought, Language, and Ontology.’ Kluwer Academic Publishers, Netherlands, pp 313–329

    Google Scholar 

  • Ilari A, Savino C (2008) Protein Structure Determination by X-Ray Crystallography. In: Keith JM (ed) Bioinformatics. Methods in Molecular Biology™. Humana Press, pp 63–87

  • Jones DT, Thornton JM (2022) The impact of AlphaFold2 one year on. Nat Methods 19:15–20

    Article  CAS  PubMed  Google Scholar 

  • Jumper et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntz ID (1972) Protein folding. J Am Chem Soc 94:4009–4012

    Article  CAS  PubMed  Google Scholar 

  • Kussell E, Shimada J, Shakhnovich EI (2002) A structure-based method for derivation of all-atom potentials for protein folding. Proc Natl Acad Sci USA 99:5343–5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplane L, Mantovani P, Adolphs R, Chang H, Mantovani A, McFall-Ngai M, Rovelli C, Sober E, Pradeu T (2019) Opinion: Why science needs philosophy. Proc Natl Acad Sci USA 116:3948–3952

    Article  PubMed Central  Google Scholar 

  • Lewis PN, Momany FA, Scheraga HA (1971) Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc Natl Acad Sci USA 68:2293–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liem RKH, Poland D, Scheraga HA (1970) Titration of α-helical poly-L-lysine in 95% methanol. A study of the range of the electrostatic potential in polypeptides. J Am Chem Soc 92:5717–5724

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  CAS  PubMed  Google Scholar 

  • Makowska J, Rodziewicz-Motowidło S, Bagińska K, Vila JA, Liwo A, Chmurzyński L, Scheraga HA (2006) Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc Natl Acad Sci USA 103:1744–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx V (2022) Method of the Year: protein structure prediction. Nat Methods 19:5–10

    Article  CAS  PubMed  Google Scholar 

  • McIvor JAP, Larsen DS, Mercadante D (2022) Simulating polyproline II-helix-rich peptides with the latest Kirkwood-buff force field: a direct comparison with AMBER and CHARMM. J Phys Chem B 126(40):7833–7846

    Article  CAS  PubMed  Google Scholar 

  • Miton CM, Buda K, Tokuriki N (2021) Epistasis and intramolecular networks in protein evolution. Curr Opin Struct Biol 69:160–168

    Article  CAS  PubMed  Google Scholar 

  • Nassar R, Dignon GL, Razban RM, Dill KA (2021) The protein folding problem: the role of theory. J Mol Biol 433:167126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Némethy G, Scheraga HA (1977) Protein folding. Q Rev Biophys 10:239–252

    Article  PubMed  Google Scholar 

  • Nguyen H, Maier J, Huang H, Perrone V, Simmerling C (2014) Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. J Am Chem Soc 136:13959–13962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onuchic JN, Wolynes PG (2004) Theory of protein folding. Curr Opin Struct Biol 14:70–75

    Article  CAS  PubMed  Google Scholar 

  • Ourmazd A (2019) Cryo-EM, XFELs and the structure conundrum in structural biology. Nat Methods 16:941–944

    Article  CAS  PubMed  Google Scholar 

  • Pan BB, Yang F, Ye Y, Wu Q, Li C, Huber T, Su XC (2016) 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem Commun (camb) 52:10237–10240

    Article  CAS  PubMed  Google Scholar 

  • Pancotti C, Benevenuta S, Birolo G, Alberini V, Repetto V, Sanavia T, Capriotti E, Fariselli P (2022) Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset. Brief Bioinform 23:bbab555

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips PC (2008) Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9(11):855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland D, Scheraga HA (1970) The theory of helix-coil transition. Academic Press, New York

    Google Scholar 

  • Rose GD (2021) Protein folding—seeing is deceiving. Protein Sci 30:1606–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) A backbone-based theory of protein folding. Proc Natl Acad Sci USA 103:16623–16633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossmann MG, Argos P (1981) Protein folding. Annu Rev Biochem 50:497–532

    Article  CAS  PubMed  Google Scholar 

  • Serpell LC, Radford SE, Otzen DE (2021) AlphaFold: a special issue and a special time for protein science. J Mol Biol 433:167231

    Article  CAS  PubMed  Google Scholar 

  • Shakhnovich E (2006) Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem Rev 106:1559–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Q, Zhu W (2017) How well can implicit solvent simulations explore folding pathways? A quantitative analysis of α-helix bundle proteins. J Chem Theory Comput 13:6177–6190

    Article  CAS  PubMed  Google Scholar 

  • Starr TN, Thornton JW (2016) Epistasis in protein evolution. Protein Sci 25:1204–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Scheraga HA (1975) Model of protein folding: inclusion of short-, medium-, and long-range interactions. Proc Natl Acad Sci USA 72:3802–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrisi M, Pollastri G, Le Q (2020) Deep learning methods in protein structure prediction. Comput Struct Biotechnol J 18:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunyasuvunakool K, Adler J, Wu Z et al (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Vaart A, Bursulaya BD, Brooks CL, Merz KM (2000) Are many-body effects important in protein folding? J Phys Chem B 104:9554–9563

    Article  Google Scholar 

  • Vila J (1986a) Statistical mechanics in homopolypeptides. I. Theoretical approach for titration process in α helix. J Chem Phys 84:6421–6425

    Article  CAS  Google Scholar 

  • Vila J (1986b) Statistical mechanics in homopolypeptide. II. Theoretical approach for denaturation process induced by pH change. J Chem Phys 84:6426–6431

    Article  CAS  Google Scholar 

  • Vila J (1987) Lattice gas with a weak long-range positive potential. J Phys A 20:3887–3894

    Article  Google Scholar 

  • Vila JA (2020) Metamorphic proteins in light of Anfinsen’s Dogma. J Phys Chem Lett 11:4998–4999

    Article  CAS  PubMed  Google Scholar 

  • Vila JA (2022) Proteins’ evolution upon point mutations. ACS Omega 7:14371–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila JA, Ripoll DR, Scheraga HA (2000) Physical reasons for the unusual α-helix stabilization afforded by charged or neutral polar residues in alanine-rich peptides. Proc Natl Acad Sci USA 97:13075–13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila JA, Ripoll DR, Scheraga HA (2003) Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures. Proc Natl Acad Sci USA 100:14812–14816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Charron N, Husic B, Olsson S, Noé F, Clementi C (2021) Multi-body effects in a coarse-grained protein force field. J Chem Phys 154:164113

    Article  CAS  PubMed  Google Scholar 

  • Wolynes PG (2015) Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119:218–230

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich K (1990) Protein structure determination in solution by NMR spectroscopy. J Biol Chem 265:22059–22062

    Article  PubMed  Google Scholar 

  • Zimm BH, Bragg JK (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 31:526–553

    Article  CAS  Google Scholar 

  • Zimm BH, Rice SA (1960) The helix-coil transition in charged macromolecules. Mol Phys 3:391–407

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the IMASL-CONICET-UNSL and ANPCyT (PICT-02212), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Vila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila, J.A. Rethinking the protein folding problem from a new perspective. Eur Biophys J 52, 189–193 (2023). https://doi.org/10.1007/s00249-023-01657-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01657-w

Keywords

Navigation