Skip to main content
Log in

Beyond the US-SOMO-AF database: a new website for hydrodynamic, structural, and circular dichroism calculations on user-supplied structures

  • Methods Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

At the 25th International Analytical Ultracentrifugation Workshop and Symposium, we described the recent implementation of the UltraScan SOlution MOdeler AlphaFold (US-SOMO-AF) database, containing hydrodynamic, structural, CD calculations, and other ancillary information, performed on the entire AF v2 database of predicted protein structures, containing more than 1,000,000 entries. The scope of the US-SOMO-AF database was that of providing direct access to pre-calculated physicochemical parameters for rapid assessment against their experimentally determined counterparts to test the compatibility in solution of predicted AlphaFold structures. In the meantime, the AlphaFold consortium has extended its database of predicted structures to an astonishing > 200 million entries, making it quite impractical for their coverage in the US-SOMO-AF database. Therefore, we have created the US-SOMO-Web site, allowing the rapid calculations of all the properties, as present in the US-SOMO-AF database, on user-supplied PDB and mmCIF structures, as well as allowing direct processing of the latest AlphaFold models. Major features on the website are described, along with current limitations and potential future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

There is no stored “data”. The data are produced dynamically on the website by calculating properties from user supplied structures or from structures obtained from other sources (e.g. AlphaFold database).

References

  • Akdel M, Pires DEV, Pardo EP, Janes J, Zalevsky AO, Meszaros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P (2022) A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol 29:1056–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakken SS, Suraski Z, Schmid E (2000) PHP Manual: Volume 1. iUniverse

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes E, Rocco M (2018) Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite. Eur Biophys J 47:855–864

    Article  PubMed  Google Scholar 

  • Brookes E, Rocco M (2022) A database of calculated solution parameters for the AlphaFold predicted protein structures. Sci Rep 12:7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes E, Demeler B, Rocco M (2010a) The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. Eur Biophys J 39:423–435

    Article  CAS  PubMed  Google Scholar 

  • Brookes E, Demeler B, Rocco M (2010b) Developments in the US-SOMO bead modeling suite: new features in the direct residue-to-bead method, improved grid routines, and influence of accessible surface area screening. Macromol Biosci 10:746–753

    Article  CAS  PubMed  Google Scholar 

  • Brookes E, Pérez J, Cardinali B, Profumo A, Vachette P, Rocco M (2013) Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler (US-SOMO) enhanced SAS module. J App Crystallog 46:1823–1833

    Article  CAS  Google Scholar 

  • Brookes E, Rocco M, Vachette P, Trewhella J (2023) AlphaFold predicted protein structures and SAS: insights from an extended examination of selected data in the SASBDB database. J App Crystallog (Submitted)

  • Chai L, Zhu P, Chai J, Pang C, Andi B, McSweeney S, Shanklin J, Liu Q (2021) AlphaFold protein structure database for sequence-independent molecular replacement. Crystals 11:1227

  • Demeler B, Gorbet GE (2016) Analytical ultracentrifugation data analysis with UltraScan-III. In: Analytical ultracentrifugation, pp 119–143. Springer, Tokyo

  • Durchschlag H, Zipper P (1994) Calculation of the partial volume of organic compounds and polymers. Progr Colloid Polym Sci 94:20–39

    Article  CAS  Google Scholar 

  • Merkel D (2014) Docker: lightweight linux containers for consistent development and deployment. Linux J 239 art. 2

  • Heo Y, Yoon E, Jeon YE, Yun JH, Ishimoto N, Woo H, Park SY, Song JJ, Lee W (2022) Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand-binding specificity. eLife 11:e76823

  • Ferrario E, Miggiano R, Rizzi M, Ferraris DM (2022) The integration of AlphaFold-predicted and crystal structures of human trans-3-hydroxy-l-proline dehydratase reveals a regulatory catalytic mechanism. Comput Struct Biotechnol J 20:3874–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flower TG, Hurley JH (2021) Crystallographic molecular replacement using an in silico-generated search model of SARS-CoV-2 ORF8. Protein Sci 30:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana P, Dong Y, Pi X, Tong AB, Hecksel CW, Wang L, Fu TM, Bustamante C, Wu H (2022) Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 376, eabm9326

  • Fowler NJ, Williamson MP (2022) The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 30:925–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García de la Torre J, Bloomfield VA (1981) Hydrodynamic properties of complex rigid biological macromolecules: theory and applications. Q Rev Biophys 14:81–139

    Article  PubMed  Google Scholar 

  • Gerstein M, Chothia C (1996) Packing at the protein-water interface. Proc Natl Acad Sci USA 93:10167–10172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glatter O (1977) A new method for the evaluation of small-angle scattering data. J App Crystallog 10:307–315

    Article  Google Scholar 

  • Hancock DY, Fischer J, Lowe JM, Snapp-Childs W, Pierce M, Marru S, Coulter JE, Vaughn M, Beck B, Merchant N, Skidmore E (2021) PEARC '21: Practice and Experience in Advanced Research Computing, J Paris, J Milhans, B Hillery, S Broude Geva, P Schmitz, R Sinkovits (eds). Association for Computer Machinery, pp 1–8

  • Hanson RM, Prilusky J, Zhou R, Nakane T, Sussman JL (2013) JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia. Isr J Chem 53:207–216

    Article  CAS  Google Scholar 

  • Juba D, Audus DJ, Mascagni M, Douglas JF, Keyrouz W (2017) ZENO: Software for calculating hydrodynamic, electrical, and shape properties of polymer and particle suspensions. J Res Natl Inst Stand Technol 122:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang EH, Mansfield ML, Douglas JF (2004) Numerical path integration technique for the calculation of transport properties of proteins. Phys Rev E Stat Nonlinear Soft Matter Phys 69:031918

    Article  Google Scholar 

  • Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J (2021) Critical assessment of methods of protein structure prediction (CASP)—Round XIV. Proteins 89:1607–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntz ID, Kauzmann W (1974) Hydration of proteins and polypeptides. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry, vol 28. Academic, Waltham, pp 239–345

    Google Scholar 

  • Mansfield ML, Douglas JF (2008) Improved path integration method for estimating the intrinsic viscosity of arbitrarily shaped particles. Phys Rev E Stat Nonlinear Soft Matter Phys 78:046712

    Article  Google Scholar 

  • McCoy AJ, Sammito MD, Read RJ (2022) Implications of AlphaFold2 for crystallographic phasing by molecular replacement. Acta Crystallogr D Struct Biol 78:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy G, Igaev M, Hoffmann SV, Jones NC, Grubmüller H (2019) SESCA: Predicting circular dichroism spectra from protein molecular structures. J Chem Theory Comput 15:5087–5102

    Article  CAS  PubMed  Google Scholar 

  • Oeffner RD, Croll TI, Millan C, Poon BK, Schlicksup CJ, Read RJ, Terwilliger TC (2022) Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE. Acta Crystallogr D Struct Biol 78:1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins SJ, Wright DW, Zhang H, Brookes EH, Chen J, Irving TC, Krueger S, Barlow DJ, Edler KJ, Scott DJ, Terrill NJ, King SM, Butler PD, Curtis JE (2016) Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS). J App Crystallog 49:1861–1875

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 251605-1612

  • Rai N, Nöllmann M, Spotorno B, Tassara G, Byron O, Rocco M (2005) SOMO (SOlution MOdeler): differences between X-ray and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics. Structure 13:723–734

    Article  CAS  PubMed  Google Scholar 

  • Rocco M, Byron O (2015) Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs. Eur Biophys J 44:417–431 (Erratum https://doi.org/10.1007/s00249-015-1058-1)

  • Rocco M, Brookes E, Byron, O (2021) US-SOMO: Methods for construction and hydration of macromolecular hydrodynamic models. In: Roberts G, Watts A (Eds) Encyclopedia of Biophysics, European Biophysical Societies. Springer. https://doi.org/10.1007/978-3-642-35943-9_292-1

  • Savelyev A, Brookes E (2019) GenApp: Extensible tool for rapid generation of web and native GUI applications. Future Gener Comput Syst 94:929–936

    Article  Google Scholar 

  • Sobell MG (2011) A practical guide to Ubuntu Linux. Pearson Education

  • Spotorno B, Piccinini L, Tassara G, Ruggiero C, Nardini M, Molina F, Rocco M (1997) BEAMS (BEAds Modelling System): a set of computer programs for the generation, the visualization and the computation of the hydrodynamic and conformational properties of bead models of proteins. Eur. Biophys. J. 25:373–384. Erratum 26:417

  • Stroustrup B (2000) The C++ programming language. Pearson Education India

  • Terwilliger TC, Poon BK, Afonine PV, Schlicksup CJ, Croll TI, Millan C, Richardson JS, Read RJ, Adams PD (2022) Improved AlphaFold modeling with implicit experimental information. Nat Methods 19:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R (2014) XSEDE: Accelerating scientific discovery. Comput Sci Eng 16:62–74

    Article  Google Scholar 

  • Urban P, Pompon D (2022) Confrontation of AlphaFold models with experimental structures enlightens conformational dynamics supporting CYP102A1 functions. Sci Rep 12:15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI (2015) SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res 43:D357-363

    Article  CAS  PubMed  Google Scholar 

  • Wall L, Christiansen T, Orwant J (2000) Programming perl. O’Reilly Media

  • Zuk PJ, Cichocki B, Szymczak P (2018) GRPY: an accurate bead method for calculation of hydrodynamic properties of rigid biomacromolecules. Biophys J 115:782–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

EB was funded by the National Institutes of Health, National Institute of General Medical Sciences grant GM120600 and the National Science Foundation Grant 1912444. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1548562 and utilized Jetstream2 at Indiana University through allocation TG-MCB17057 to EB. This work benefited from CCP-SAS (software developed through a joint EPSRC (EP/K039121/1) and NSF (CHE-1265821) Grant.

Funding

Funding was provided by National Institutes of Health (US) (Grant No. GM120600) and Directorate for Computer and Information Science and Engineering (Grant No. 1912444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre H. Brookes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: Analytical Ultracentrifugation 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brookes, E.H., Rocco, M. Beyond the US-SOMO-AF database: a new website for hydrodynamic, structural, and circular dichroism calculations on user-supplied structures. Eur Biophys J 52, 225–232 (2023). https://doi.org/10.1007/s00249-023-01636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01636-1

Keywords

Navigation