Skip to main content
Log in

Analysis of residue–residue interactions in the structures of ASIC1a suggests possible gating mechanisms

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue–residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue–residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding author, [DBT] upon request.

References

  • Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E (2014) X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell 156:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron A, Lingueglia E (2015) Pharmacology of acid-sensing ion channels-physiological and therapeutical perspectives. Neuropharmacology 94:19–35

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, Schmid G, Hugin D, Pflimlin P, Trube G, Rudolph MG, Hennig M, Ruf A (2012) Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat Commun 3:936

    Article  PubMed  Google Scholar 

  • Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwiazda K, Bonifacio G, Vullo S, Kellenberger S (2015) Extracellular subunit interactions control transitions between functional states of acid-sensing ion channel 1a. J Biol Chem 290:17956–17966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    Article  CAS  PubMed  Google Scholar 

  • Korkosh VS, Zhorov BS, Tikhonov DB (2014) Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. J Gen Physiol 144:231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krauson AJ, Rued AC, Carattino MD (2013) Independent contribution of extracellular proton binding sites to ASIC1a activation. J Biol Chem 288:34375–34383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaridis T, Karplus M (1999) Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J Mol Biol 288:477–487

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A 84:6611–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liechti LA, Berneche S, Bargeton B, Iwaszkiewicz J, Roy S, Michielin O, Kellenberger S (2010) A combined computational and functional approach identifies new residues involved in pH-dependent gating of ASIC1a. J Biol Chem 285:16315–16329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ma J, DesJarlais RL, Hagan R, Rech J, Lin D, Liu C, Miller R, Schoellerman J, Luo J, Letavic M, Grasberger B, Maher M (2021) Molecular mechanism and structural basis of small-molecule modulation of the gating of acid-sensing ion channel 1. Communications Biology 4:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynagh T, Mikhaleva Y, Colding JM, Glover JC, Pless SA (2018) Acid-sensing ion channels emerged over 600 Mya and are conserved throughout the deuterostomes. Proc Natl Acad Sci U S A 115:8430–8435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean DM, Jayaraman V (2017) Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. Proc Natl Acad Sci U S A 114:E2504–E2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paukert M, Chen X, Polleichtner G, Schindelin H, Grunder S (2008) Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a. J Biol Chem 283:572–581

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy SS, MacLean DM, Gorfe AA, Jayaraman V (2013) Proton-mediated conformational changes in an acid-sensing ion channel. J Biol Chem 288:35896–35903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rook ML, Musgaard M, MacLean DM (2021) Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 599:417–430

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Boiteux C, Alijevic O, Liang C, Berneche S, Kellenberger S (2013) Molecular determinants of desensitization in an ENaC/degenerin channel. FASEB J 27:5034–5045

    Article  CAS  PubMed  Google Scholar 

  • Shaikh SA, Tajkhorshid E (2008) Potential cation and H+ binding sites in acid sensing ion channel-1. Biophys J 95:5153–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storozhuk M, Cherninskyi A, Maximyuk O, Isaev D, Krishtal O (2021) Acid-sensing ion channels: focus on physiological and some pathological roles in the brain. Curr Neuropharmacol 19:1570–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Liu S, Li S, Zhang M, Yang F, Wen M, Shi P, Wang T, Pan M, Chang S, Zhang X, Zhang L, Tian C, Liu L (2020) Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. eLife 9:e57096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonov DB, Zhorov BS (2017) Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J Gen Physiol 149:465–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vullo S, Bonifacio G, Roy S, Johner N, Berneche S, Kellenberger S (2017) Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating. Proc Natl Acad Sci U S A 114:3768–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yu Y, Li WG, Yu F, Cao H, Xu TL, Jiang H (2009) Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol 7:e1000151

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoder N, Gouaux E (2018) Divalent cation and chloride ion sites of chicken acid sensing ion channel 1a elucidated by x-ray crystallography. PLoS One 13:e0202134

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoder N, Gouaux E (2020) The His-Gly motif of acid-sensing ion channels resides in a reentrant “loop” implicated in gating and ion selectivity. eLife 9:e56527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder N, Yoshioka C, Gouaux E (2018) Gating mechanisms of acid-sensing ion channels. Nature 555:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by RSF grant 21-14-00280 to DBT.

Author information

Authors and Affiliations

Authors

Contributions

VSK: calculations, data analysis, manuscript preparation. DBT: project design, data analysis, manuscript preparation.

Corresponding author

Correspondence to Denis B. Tikhonov.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkosh, V.S., Tikhonov, D.B. Analysis of residue–residue interactions in the structures of ASIC1a suggests possible gating mechanisms. Eur Biophys J 52, 111–119 (2023). https://doi.org/10.1007/s00249-023-01628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01628-1

Keywords

Navigation