Skip to main content

Advertisement

Log in

Biophysical characterization of the DNA binding motif of human phospholipid scramblase 1

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Human phospholipid scramblase 1 (hPLSCR1) is a 37 kDa multi-compartmental protein, which was initially identified as a Ca2+-dependent phospholipid translocator upon localizing to the plasma membrane. However, under certain physiological conditions, hPLSCR1 is localized to the nucleus where it interacts with the IP3R1 promoter (IP3R1P) and regulates its expression. In this study, the DNA binding properties of hPLSCR1 and ∆100-hPLSCR1 (N-terminal 100 amino acids deleted from hPLSCR1) were investigated by using a synthetic IP3R1P oligonucleotide and nonspecific scrambled-sequence oligonucleotides. Our results revealed that hPLSCR1 and ∆100-hPLSCR1 were bound to IP3R1P oligos in a 1:1 stoichiometry. In addition, ∆160-hPLSCR1 could not bind to IP3R1P oligonucleotide suggesting that the proposed DNA binding motif is the actual DNA binding motif. Specific binding of hPLSCR1 and ∆100-hPLSCR1 to IP3R1P oligos was demonstrated by fluorescence anisotropy assay. ITC analysis revealed that hPLSCR1 binds to IP3R1P oligos with Kd = 42.91 ± 0.23 nM. Binding of IP3R1P oligos induces β-sheet formation in hPLSCR1 and increases the thermal stability of hPLSCR1 and ∆100-hPLSCR1. Binding of IP3R1P oligos to hPLSCR1 altered the B-form of the DNA, which was not observed with ∆100-hPLSCR1. Results from this study suggest that (i) ∆100-hPLSCR1 possesses a minimal DNA binding region and (ii) structural alterations of IP3R1P oligo by hPLSCR1 require proline-rich N-terminal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrabi M, Mizuguchi K, Ahmad S (2014) Conformational changes in DNA-binding proteins: relationships with precomplex features and contributions to specificity and stability. Proteins 82:841–857

    Article  PubMed  CAS  Google Scholar 

  • Ball LJ, Kuhne R, Schneider-Mergener J, Oschkinat H (2005) Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Engl 44:2852–2869

    Article  PubMed  CAS  Google Scholar 

  • Basse F, Stout JG, Sims PJ, Wiedmer T (1996) Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid. J Biol Chem 271:17205–17210

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Finn RD, Sims PJ, Wiedmer T, Biegert A, Soding J (2009) Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors. Bioinformatics 25:159–162

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi S, Mercenne G, Tournaire C, Marquet R, Paillart JC (2011) Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Res 39:2404–2415

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Ben-Efraim I, Mitrousis G, Walker-Kopp N, Sims PJ, Cingolani G (2005) Phospholipid scramblase 1 contains a nonclassical nuclear localization signal with unique binding site in importin alpha. J Biol Chem 280:10599–10606

    Article  PubMed  CAS  Google Scholar 

  • Chen CW, Sowden M, Zhao Q, Wiedmer T, Sims PJ (2011) Nuclear phospholipid scramblase 1 prolongs the mitotic expansion of granulocyte precursors during G-CSF-induced granulopoiesis. J Leukoc Biol 90:221–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Hui H, Yang H, Zhao K, Qin Y, Gu C, Wang X, Lu N, Guo Q (2013) Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood 121:3682–3691

    Article  PubMed  CAS  Google Scholar 

  • Chuzhanova N, Chen JM, Bacolla A, Patrinos GP, Ferec C, Wells RD, Cooper DN (2009) Gene conversion causing human inherited disease: evidence for involvement of non-B-DNA-forming sequences and recombination-promoting motifs in DNA breakage and repair. Hum Mutat 30:1189–1198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruickshank J, Shire K, Davidson AR, Edwards AM, Frappier L (2000) Two domains of the epstein-barr virus origin DNA-binding protein, EBNA1, orchestrate sequence-specific DNA binding. J Biol Chem 275:22273–22277

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Rossi AM, Riley AM, Rahman T, Potter BV, Taylor CW (2010) Binding of inositol 1,4,5-trisphosphate (IP3) and adenophostin A to the N-terminal region of the IP3 receptor: thermodynamic analysis using fluorescence polarization with a novel IP3 receptor ligand. Mol Pharmacol 77:995–1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong B, Zhou Q, Zhao J, Zhou A, Harty RN, Bose S, Banerjee A, Slee R, Guenther J, Williams BR, Wiedmer T, Sims PJ, Silverman RH (2004) Phospholipid scramblase 1 potentiates the antiviral activity of interferon. J Virol 78:8983–8993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francis VG, Mohammed AM, Aradhyam GK, Gummadi SN (2013) The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. FEBS J 280:2855–2869

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Cheng M, Chen H, Liu X, Si Y, Yang Y, Yuan Y, Jin C, Yang W, He F, Wang J (2011) Phospholipid scramblase 1 mediates hepatitis C virus entry into host cells. FEBS Lett 585:2647–2652

    Article  PubMed  CAS  Google Scholar 

  • Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, Huang YF, Makova KD (2021) Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res 49:1497–1516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Zhao Q, Zhou CX, Gu ZM, Li D, Xu HZ, Wiedmer T, Sims PJ, Zhao KW, Chen GQ (2006) Antileukemic roles of human phospholipid scramblase 1 gene, evidence from inducible PLSCR1-expressing leukemic cells. Oncogene 25:6618–6627

    Article  PubMed  CAS  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    Article  PubMed  CAS  Google Scholar 

  • Kohwi Y, Kohwi-Shigematsu T (1991) Altered gene expression correlates with DNA structure. Genes Dev 5:2547–2554

    Article  PubMed  CAS  Google Scholar 

  • Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58:741–753

    Article  PubMed  CAS  Google Scholar 

  • Muller MM, Ruppert S, Schaffner W, Matthias P (1988) A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336:544–551

    Article  PubMed  CAS  Google Scholar 

  • Nanjundan M, Sun J, Zhao J, Zhou Q, Sims PJ, Wiedmer T (2003) Plasma membrane phospholipid scramblase 1 promotes EGF-dependent activation of c-Src through the epidermal growth factor receptor. J Biol Chem 278:37413–37418

    Article  PubMed  CAS  Google Scholar 

  • Neurath H (1989) Proteolytic processing and physiological regulation. Trends Biochem Sci 14:268–271

    Article  PubMed  CAS  Google Scholar 

  • Opitz R, Muller M, Reuter C, Barone M, Soicke A, Roske Y, Piotukh K, Huy P, Beerbaum M, Wiesner B, Beyermann M, Schmieder P, Freund C, Volkmer R, Oschkinat H, Schmalz HG, Kuhne R (2015) A modular toolkit to inhibit proline-rich motif-mediated protein-protein interactions. Proc Natl Acad Sci USA 112:5011–5016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Rayala S, Francis VG, Sivagnanam U, Gummadi SN (2014) N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. J Biol Chem 289:13206–13218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi AM, Taylor CW (2011) Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 6:365–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rudiger S, Danieli T, Friedler A (2008) The structure and interactions of the proline-rich domain of ASPP2. J Biol Chem 283:18990–18999

    Article  PubMed  CAS  Google Scholar 

  • Sahu SK, Gummadi SN, Manoj N, Aradhyam GK (2007) Phospholipid scramblases: an overview. Arch Biochem Biophys 462:103–114

    Article  PubMed  CAS  Google Scholar 

  • Sivagnanam U, Narayana Murthy S, Gummadi SN (2016) Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1. BMC Biochem 17:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivagnanam U, Palanirajan SK, Gummadi SN (2017) The role of human phospholipid scramblases in apoptosis: an overview. Biochim Biophys Acta Mol Cell Res 1864:2261–2271

    Article  PubMed  CAS  Google Scholar 

  • Stout JG, Basse F, Luhm RA, Weiss HJ, Wiedmer T, Sims PJ (1997) Scott syndrome erythrocytes contain a membrane protein capable of mediating Ca2+-dependent transbilayer migration of membrane phospholipids. J Clin Invest 99:2232–2238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Zhao J, Schwartz MA, Wang JY, Wiedmer T, Sims PJ (2001) c-Abl tyrosine kinase binds and phosphorylates phospholipid scramblase 1. J Biol Chem 276:28984–28990

    Article  PubMed  CAS  Google Scholar 

  • Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  PubMed  CAS  Google Scholar 

  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444

    Article  PubMed  CAS  Google Scholar 

  • Wiedmer T, Zhou Q, Kwoh DY, Sims PJ (2000) Identification of three new members of the phospholipid scramblase gene family. Biochim Biophys Acta 1467:244–253

    Article  PubMed  CAS  Google Scholar 

  • Wiedmer T, Zhao J, Nanjundan M, Sims PJ (2003) Palmitoylation of phospholipid scramblase 1 controls its distribution between nucleus and plasma membrane. Biochemistry 42:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Williams T, Admon A, Luscher B, Tjian R (1988) Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev 2:1557–1569

    Article  PubMed  CAS  Google Scholar 

  • Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297(Pt 2):249–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu KK (2006) Analysis of protein-DNA binding by streptavidin-agarose pulldown. Methods Mol Biol 338:281–290

    PubMed  CAS  Google Scholar 

  • Wyles JP, Wu Z, Mirski SE, Cole SP (2007) Nuclear interactions of topoisomerase II alpha and beta with phospholipid scramblase 1. Nucleic Acids Res 35:4076–4085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao J, Zhou Q, Wiedmer T, Sims PJ (1998) Palmitoylation of phospholipid scramblase is required for normal function in promoting Ca2+-activated transbilayer movement of membrane phospholipids. Biochemistry 37:6361–6366

    Article  PubMed  CAS  Google Scholar 

  • Zhao KW, Li D, Zhao Q, Huang Y, Silverman RH, Sims PJ, Chen GQ (2005) Interferon-alpha-induced expression of phospholipid scramblase 1 through STAT1 requires the sequential activation of protein kinase Cdelta and JNK. J Biol Chem 280:42707–42714

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Bacolla A, Wang G, Vasquez KM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67:43–62

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Zhao J, Stout JG, Luhm RA, Wiedmer T, Sims PJ (1997) Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J Biol Chem 272:18240–18244

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99:4030–4038

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Ben-Efraim I, Bigcas JL, Junqueira D, Wiedmer T, Sims PJ (2005) Phospholipid scramblase 1 binds to the promoter region of the inositol 1,4,5-triphosphate receptor type 1 gene to enhance its expression. J Biol Chem 280:35062–35068

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

SR is supported by Senior Research Fellowship from CSIR. US acknowledge the Ministry of Human Resource and Development, Government of India for fellowship. Authors acknowledge the Department of Science and Technology and the Indian Institute of Technology Madras for their financial support for CD spectroscopy, ITC, and DSC instruments.

Funding

This work was funded by the Council of Scientific and Industrial Research (CSIR), Government of India (Grant ID: 37/1651/15-EMR-II).

Author information

Authors and Affiliations

Authors

Contributions

SNG coordinated the study. SNG and SR designed the experiments and SR performed all the experiments. US performed gel filtration chromatography and electrophoretic mobility shift assay. SR, US and SNG prepared the manuscript. All authors declare no competing interests.

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 757 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayala, S., Sivagnanam, U. & Gummadi, S.N. Biophysical characterization of the DNA binding motif of human phospholipid scramblase 1. Eur Biophys J 51, 579–593 (2022). https://doi.org/10.1007/s00249-022-01621-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-022-01621-0

Keywords

Navigation