Skip to main content
Log in

An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs

  • Methods Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Cultured neuronal networks (CNNs) are powerful tools for studying how neuronal representation and adaptation emerge in networks of controlled populations of neurons. To ensure the interaction of a CNN and an artificial setting, reliable operation in both open and closed loops should be provided. In this study, we integrated optogenetic stimulation with microelectrode array (MEA) recordings using a digital micromirror device and developed an improved research tool with a 64-channel interface for neuronal network control and data acquisition. We determined the ideal stimulation parameters including light intensity, frequency, and duty cycle for our configuration. This resulted in robust and reproducible neuronal responses. We also demonstrated both open and closed loop configurations in the new platform involving multiple bidirectional channels. Unlike previous approaches that combined optogenetic stimulation and MEA recordings, we did not use binary grid patterns, but assigned an adjustable-size, non-binary optical spot to each electrode. This approach allowed simultaneous use of multiple input–output channels and facilitated adaptation of the stimulation parameters. Hence, we advanced a 64-channel interface in that each channel can be controlled individually in both directions simultaneously without any interference or interrupts. The presented setup meets the requirements of research in neuronal plasticity, network encoding and representation, closed-loop control of firing rate and synchronization. Researchers who develop closed-loop control techniques and adaptive stimulation strategies for network activity will benefit much from this novel setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barral J, Reyes A (2017) Optogenetic stimulation and recording of primary cultured neurons with spatiotemporal control. Bio-Protoc 7:e2335

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisio M, Pimashkin A, Buccelli S, Tessadori J, Semprini M, Levi T, Colombi I, Gladkov A, Mukhina I, Averna A, Kazantsev V, Pasquale V, Chiappalone M (2019) Closed-loop systems and in vitro neuronal cultures: overview and applications. Adv Neurobiol 22:351–387

    Article  PubMed  Google Scholar 

  • Brzosko Z, Schultz W, Paulsen O (2015) Retroactive modulation of spike timing-dependent plasticity by dopamine. Elife 4:e09685

    Article  PubMed  PubMed Central  Google Scholar 

  • Buccelli S, Bornat Y, Colombi I, Ambroise M, Martines L, Pasquale V, Bisio M, Tessadori J, Nowak P, Grassia F, Averna A, Tedesco M, Bonifazi P, Difato F, Massobrio P, Levi T, Chiappalone M (2019) A neuromorphic prosthesis to restore communication in neuronal networks. iScience 19:402–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Caro-Martín CR, Delgado-García JM, Gruart A, Sánchez-Campusano R (2018) Spike sorting based on shape, phase, and distribution features, and K-TOPS clustering with validity and error indices. Sci Rep 8:33–38

    Article  CAS  Google Scholar 

  • Chan HL, Lin MA, Wu T, Lee ST, Tsai YT, Chao PK (2008) Detection of neuronal spikes using an adaptive threshold based on the max-min spread sorting method. J Neurosci Methods 172:112–121

    Article  PubMed  Google Scholar 

  • Eguia MC, Garcia GC, Romano SA (2010) A biophysical model for modulation frequency encoding in the cochlear nucleus. J Physiol Paris 104:118–127

    Article  PubMed  Google Scholar 

  • Erofeev A, Gerasimov E, Lavrova A, Bolshakova A, Postnikov E, Bezprozvanny I, Vlasova OL (2019) Light stimulation parameters determine neuron dynamic characteristics. Appl Sci 9:3673

    Article  CAS  Google Scholar 

  • Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich J, Yang W, Soudry D, Mu Y, Ahrens M, Yuste R, Peterka D, Paninski L (2017) Multi-scale approaches for high-speed imaging and analysis of large neural populations. PLoS Comput Biol 13:e1005685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • George R, Chiappalone M, Giugliano M, Levi T, Vassanelli S, Partzsch J, Mayr C (2020) Plasticity and adaptation in neuromorphic biohybrid systems. iScience 23:1–26

    Google Scholar 

  • Hu C, Sam R, Shan M, Nastasa V, Wang M, Kim T, Gillette M, Sengupta P, Popescu G (2019) Optical excitation and detection of neuronal activity. J Biophotonics 12:e201800269

    PubMed  Google Scholar 

  • Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94

    Article  CAS  PubMed  Google Scholar 

  • Ju H, Dranias MR, Banumurthy G, VanDongen AMJ (2015) Spatiotemporal memory is an intrinsic property of networks of dissociated cortical neurons. J Neurosci 35:4040–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren H, Partzsch J, Marom S, Mayr CG (2019) A biohybrid setup for coupling biological and neuromorphic neural networks. Front Neurosci 13:1–11

    Article  Google Scholar 

  • Lapp H, Bruegmann T, Malan D, Friedrichs S, Kilgus C, Heidsieck A, Sasse P (2017) Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci Rep 7:1–12

    Article  Google Scholar 

  • Li W (2017) Optogenetic control of in vitro neural networks on multi-electrode arrays

  • Lu Q, Ganjawala TH, Krstevski A, Abrams GW, Pan ZH (2020) Comparison of AAV-mediated optogenetic vision restoration between retinal ganglion cell expression and ON bipolar cell targeting. Mol Ther Methods Clin Dev 18:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massobrio P, Tessadori J, Chiappalone M, Ghirardi M (2015) In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays. Neural Plast 2015:196195

    Article  PubMed  PubMed Central  Google Scholar 

  • Mena GE, Grosberg LE, Madugula S, Hottowy P, Litke A, Cunningham J, Chichilnisky EJ, Paninski L (2017) Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays. PLoS Comput Biol 13:e1005842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosbacher Y, Khoyratee F, Goldin M, Kanner S, Malakai Y, Silva M, Grassia F, Ben SY, Cortes J, Barzilai A, Levi T, Bonifazi P (2020) Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation. Sci Rep 10:1–16

    Article  CAS  Google Scholar 

  • Muzzi L, Hassink G, Levers M, Jansman M, Frega M, Hofmeijer J, Van Putten M, Le Feber J (2020) Mild stimulation improves neuronal survival in an in vitro model of the ischemic penumbra. J Neural Eng 17:016001

    Article  Google Scholar 

  • Newman JP, Fong MF, Millard DC, Whitmire CJ, Stanley GB, Potter SM (2015) Optogenetic feedback control of neural activity. Elife 4:1–24

    Article  Google Scholar 

  • Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U (2015) Revealing neuronal function through microelectrode array recordings. Front Neurosci 9:423

    Google Scholar 

  • Odawara A, Katoh H, Matsuda N, Suzuki I (2016) Induction of long-term potentiation and depression phenomena in human induced pluripotent stem cell-derived cortical neurons. Biochem Biophys Res Commun 469:856–862

    Article  CAS  PubMed  Google Scholar 

  • Pandarinath C, Carlson ET, Nirenberg S (2013) A system for optically controlling neural circuits with very high spatial and temporal resolution. In: 13th IEEE Int Conf Bioinforma Bioeng IEEE BIBE 2013, pp 1–14

  • Pimashkin A, Gladkov A, Mukhina I, Kazantsev V (2013) Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays. Front Neural Circuits 7:1–9

    Article  Google Scholar 

  • Pulizzi R, Musumeci G, Van Den Haute C, Van De Vijver S, Baekelandt V, Giugliano M (2016) Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks. Sci Rep 6:4–5

    Article  CAS  Google Scholar 

  • Satuvuori E, Mulansky M, Bozanic N, Malvestio I, Zeldenrust F, Lenk K, Kreuz T (2017) Measures of spike train synchrony for data with multiple time scales. J Neurosci Methods 287:25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmieder F, Klapper SD, Koukourakis N, Busskamp V, Czarske JW (2018) Optogenetic stimulation of human neural networks using fast ferroelectric spatial light modulator-based holographic Illumination. Appl Sci 8:1180

    Article  CAS  Google Scholar 

  • Steude A, Witts EC, Miles GB, Gather MC (2016) Arrays of microscopic organic LEDs for high-resolution optogenetics. Sci Adv 2:e1600061

    Article  PubMed  PubMed Central  Google Scholar 

  • Tafazoli S, MacDowell CJ, Che Z, Letai KC, Steinhardt C, Buschman TJ (2020) Learning to control the brain through adaptive closed-loop patterned stimulation. J Neural Eng 17:056007

    Article  PubMed  Google Scholar 

  • To WT, De Ridder D, Hart J, Vanneste S (2018) Changing brain networks through non-invasive neuromodulation. Front Hum Neurosci 12:1–17

    Article  Google Scholar 

  • Turesson HK, Rodríguez-Sierra OE, Pare D (2013) Intrinsic connections in the anterior part of the bed nucleus of the stria terminalis. J Neurophysiol 109:2438–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twyford PT (2011) Spatiotemporally precise optical stimulation system for controlling neuronal activity in-vitro

  • Wagenaar DA, Madhavan R, Pine J, Potter SM (2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 25:680–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenaar DA, Pine J, Potter SM (2006) Searching for plasticity in dissociated cortical cultures on multi-electrode arrays. J Negat Results Biomed 5:1–9

    Article  Google Scholar 

  • Welkenhuysen M, Hoffman L, Luo Z, De Proft A, Van Den Haute C, Baekelandt V, Debyser Z, Gielen G, Puers R, Braeken D (2016) An integrated multi-electrode-optrode array for in vitro optogenetics. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  • Zirkle J, Rubchinsky LL (2020) Spike-timing dependent plasticity effect on the temporal patterning of neural synchronization. Front Comput Neurosci 14:1–13

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bora Garipcan, Ph.D., Deniz Atasoy, Ph.D., and Guenter Gross, Ph.D., for their technical supports and valuable advices throughout our research.

Funding

This work is funded by Boğaziçi University Research Fund to author Albert Güveniş under Project Code 8080D. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kemal Bayat.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 211 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, F.K., Alp, M.İ., Bostan, S. et al. An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs. Eur Biophys J 51, 503–514 (2022). https://doi.org/10.1007/s00249-022-01613-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-022-01613-0

Keywords

Navigation