Skip to main content

Advertisement

Log in

Structure and dynamics of sodium alginate as elucidated by chemical shift anisotropy and site-specific spin–lattice relaxation time measurements

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The biocompatible, biodegradable, linear copolymer sodium alginate is fabricated from \(1 \to 4\) linked \(\beta\)-d-mannuronic acid (M block) and \(\alpha\)-l-guluronic acid (G-block). It has wide applications in drug delivery, cell encapsulation, and commercial application in the textile, cosmetics, paper, food, biomedical, and pharmaceutical industries. The structure and dynamics of sodium alginate were here investigated by measuring chemical shift anisotropy (CSA) parameters, spin–lattice relaxation time, and molecular correlation time. The principal components of the CSA tensor were determined by two-dimensional phase-adjusted spinning sideband (2DPASS) cross-polarization magic angle spinning (CP-MAS) SSNMR. The alternating M and G blocks of both equatorial and axial links are associated with greater overall flexibility. The molecular correlation time of the carboxyl carbon of both G and M blocks is faster than for the anomeric carbon and pyranose carbon. This is further experimental evidence of the coexistence of two different dynamics within the polysaccharide chains of sodium alginate, which was previously established by 1H–13C dipolar profile analysis. The relaxation time of the para-crystalline region of sodium alginate is comparable with that of chitosan, but it is much shorter than that of cellulose and chitin. The order of the molecular correlation time of sodium alginate and chitosan is also the same. Hence, it can be concluded that sodium alginate exhibits greater flexibility than cellulose and chitin. These types of investigation into the local electronic configuration and nuclear spin dynamics at various carbon nuclei sites of the biopolymer at atomic-scale resolution will help in the design of biomimetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham RJ, Mobli M, Smith RJ (2003) 1H chemical shifts in NMR: part 19† carbonyl anisotropies and steric effects in aromatic aldehydes and ketones. Magn Reson Chem 41:26–36

    Article  CAS  Google Scholar 

  • Ando I, Kuroki S, Kurosu H, Yamanobe T (2001) NMR chemical shift calculations and structural characterizations of polymers. Prog Nucl Magn Reson Spectrosc 39:79–133

    Article  CAS  Google Scholar 

  • Anet FAL, O’Leary DJ (1992) The shielding tensor part II: understanding its strange effect on relaxation. Concepts Magn Reson 4:35–52

    Article  Google Scholar 

  • Antzutkin ON (1999) Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 35:203–266

    Article  CAS  Google Scholar 

  • Antzutkin ON, Shekar SC, Levitt MH (1995) Two-dimensional sideband separation in magic angle spinning NMR. J Magn Reson A 115:7–19

    Article  CAS  Google Scholar 

  • Bax AD, Szeverenyi NM, Maciel GE (1983a) Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional Fourier-transform magic angle hopping NMR spectroscopy. J Magn Reson 52:147–152

    CAS  Google Scholar 

  • Bax AD, Szeverenyi NM, Maciel GE (1983b) Chemical shift anisotropy in powdered solids studied by 2D FT CP/MAS NMR. J Magn Reson 51:400–408

    CAS  Google Scholar 

  • Bax AD, Szeverenyi NM, Maciel GE (1983c) Chemical shift anisotropy in powdered solids studied by 2D FT NMR with flipping of the spinning axis. J Magn Reson 55:494–497

    CAS  Google Scholar 

  • Bax AD, Szeverenyi NM, Maciel GE (1983d) Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional Fourier-transform magic angle hopping NMR spectroscopy. J Magn Reson 52:147–152

    CAS  Google Scholar 

  • Bhowal R, Balaraman AA, Ghosh M, Dutta S, Dey KK, Chopra D (2021) Probing atomistic behaviour to unravel dielectric phenomena in charge transfer cocrystal. J Am Chem Soc 143:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Brus J, Urbanová M, Czernek J, Pavelkova M, Kubova K, Vyslouzil J, Abbrent S, Konefal R, Horsky J, Vetchy D, Vysloužil J, Kulich P (2017) The structure and dynamics of alginate gels crosslinked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromol 18(8):2478–2488

    Article  CAS  Google Scholar 

  • Chan JCC, Tycko R (2003) Recoupling of chemical shift anisotropies in solid state NMR under high speed magic angle spinning and in uniformly 13C labelled systems. J Chem Phys 118:8378–8389

    Article  CAS  Google Scholar 

  • Dais P, Spyros A (1995) 13C nuclear magnetic relaxation and local dynamics of synthetic polymers in dilute solution and in the bulk state. Progr Nucl Magn Reson Spectrosc 27:555–633

    Article  CAS  Google Scholar 

  • Dey KK, Ghosh M (2020a) Understanding the effect of deacetylation on chitin by measuring chemical shift anisotropy tensor and spin lattice relaxation time. Chem Phys Lett 738:136782

    Article  CAS  Google Scholar 

  • Dey KK, Ghosh M (2020b) Determination of the correlation between the structure and dynamics of deflazacort by solid state NMR measurements. New J Chem 44:18419–18430. https://doi.org/10.1039/D0NJ03418E

    Article  CAS  Google Scholar 

  • Dey KK, Ghosh M (2020c) Understanding the structure and dynamics of anti-inflammatory corticosteroid dexamethasone by solid state NMR spectroscopy. RSC Adv 10:37564

    Article  Google Scholar 

  • Dey KK, Ghosh M (2020d) Determination of chemical shift anisotropy tensor and molecular correlation time of proton pump inhibitor omeprazole by solid state NMR measurements. New J Chem. https://doi.org/10.1039/D0NJ01827A

    Article  Google Scholar 

  • Dey KK, Ghosh M (2020e) Investigation of the structure and dynamics of antiviral drug adefovir dipivoxil by site-specific spin-lattice relaxation time measurements and chemical shift anisotropy tensor measurements. ACS Omega. https://doi.org/10.1021/acsomega.0c04205

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey KK, Gayen S, Ghosh M (2019a) Investigation of the detailed internal structure and dynamics of itraconazole by solid-state NMR measurements. ACS Omega 4:21627–21635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey KK, Gayen S, Ghosh M (2019b) Understanding the correlation between structure and dynamics of clocortolone pivalate by solid state NMR measurement. RSC Adv 10:4310–4321

    Article  Google Scholar 

  • De Dios AC (1996) Ab initio calculations of the NMR chemical shift. J Progr Nucl Magn Spectrosc 29:229–278

    Article  Google Scholar 

  • Dixon WT (1982) Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys 77:1800–1809

    Article  CAS  Google Scholar 

  • Draget KI, Stokke BT, Yuguchi Y, Urakawa H, Kajiwara K (2003) Small-angle X-ray scattering and rheplogical characterization of alginate gels. 1. Ca-alginate acid gels. Biomacromol 4:1661–1668

    Article  CAS  Google Scholar 

  • Gan Z (1992) High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning. J Am Chem Soc 114:8307–8309

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell JB (1974) The structure of native cellulose. Biopolymer 13:1975–2001

    Article  CAS  Google Scholar 

  • Ghosh M, Sadhukhan S, Dey KK (2019a) Elucidating the internal structure and dynamics of chitin by 2DPASS-MAS-NMR and spin-lattice relaxation measurements. Solid State Nucl Magn Reson 97:7–16

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Prajapati BP, Kango N, Dey KK (2019b) A comprehensive and comparative study of the internal structure and dynamics of natural-keratin and regenerated-keratin by solid state NMR spectroscopy. Solid State Nucl Magn Reson 101:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Kango N, Dey KK (2019c) Investigation of the internal structure and dynamics of cellulose by 13C-NMR relaxometry and 2DPASS-MAS-NMR measurements. J Biomol NMR 73:601–616

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Gayen S, Dey KK (2020) An atomic resolution description of folic acid by solid state NMR measurements. RSC Adv 10:24973–24984

    Article  CAS  Google Scholar 

  • Haeberlen U (1976) High resolution NMR in solids: selective averaging. Academic Press, New York

    Google Scholar 

  • Haug A, Larsen B, Smidsrod O (1967) Studies on the sequence of uronic acid residues in alginic acid. Acta Chem Scand 21:691–704

    Article  CAS  Google Scholar 

  • Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030

    Article  CAS  Google Scholar 

  • Hou L, Wu P (2019) Exploring the hydrogen-bond structures in sodium alginate through two dimensional correlation infrared spectroscopy. Carbohyd Polym 205:420–426

    Article  CAS  Google Scholar 

  • Hou G, Byeon I-J, Ahn J, Gronenborn AM, Polenova T (2012) Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy. J Chem Phys 137:134201–134210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79

    Article  CAS  PubMed  Google Scholar 

  • Laws DD, Bitter H-ML, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Ang Chem Int Ed 41:3096–3129

    Article  CAS  Google Scholar 

  • Liu SF, Mao JD, Schmidt-Rohr K (2002) A robust technique for two-dimensional separation of undistorted chemical shift anisotropy powder patterns in magic angle spinning NMR. J Magn Reson 155:15–28

    Article  CAS  PubMed  Google Scholar 

  • McConnell HM (1957) Theory of nuclear magnetic shielding in molecules: long-range dipolar shielding of protons. J Chem Phys 27:226

    Article  CAS  Google Scholar 

  • Nicholas MP, Eryilmaz E, Ferrage F, Cowburn D, Ghose R (2010) Nuclear spin relaxation in isotropic and anisotropic media. Prog Nucl Magn Reson Spectrosc 57:111–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orendt AM, Facelli JC (2007) Solid state effects on NMR chemical shifts. Annu Rep NMR Spectrosc 62:115–178

    Article  CAS  Google Scholar 

  • Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohyd Res 345:469–473

    Article  CAS  Google Scholar 

  • Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, London

    Google Scholar 

  • Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699–703

    Article  CAS  Google Scholar 

  • Ramsey NF (1952) Chemical effects in nuclear magnetic resonance and in diamagnetic susceptibility. Phys Rev 86:243–246

    Article  CAS  Google Scholar 

  • Salomonsen T, Jensen H, Larsen F, Steuernagel S, Engelsen S (2009) Direct quantification of M/G ratio from 13C CP-MAS NMR spectra alginate powders by multivariate curve resolution. Carbohyd Res 344:2014–2022

    Article  CAS  Google Scholar 

  • Sarker B, Papageorgiou D, Silva R (2014) Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and phyisco-chemical properties. J Mater Chem B 2:1470

    Article  CAS  PubMed  Google Scholar 

  • Sen S (2019) Dynamics in inorganic glass-forming liquids by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 116:155–176

    Article  PubMed  CAS  Google Scholar 

  • Shao L, Titman JJ (2007) Chemical shift anisotropy amplification. Prog Nucl Magn Reson Spectrosc 51:103–137

    Article  CAS  Google Scholar 

  • Sitkoff D, Case DA (1998) Theories of chemical shift anisotropies in proteins and nucleic acids. Prog Nucl Magn Reson Spectrosc 32:165–190

    Article  CAS  Google Scholar 

  • Skjåk-Bræk G, Grasdalen H, Smidsrød O (1989) Inhomogeneous polysaccharide ionic gels. Carbohydr Polym 10:31–54

    Article  Google Scholar 

  • Sperger DM, Block S, Fu LH, Munson EJ (2011) Analysis of composition, molecular weight, and water content variations in sodium alginate using solid-state NMR spectroscopy. J Pharm Sci 100:3441–3452

    Article  CAS  PubMed  Google Scholar 

  • Stengel DB, Connan S (eds) (2015) Natural products from marine algae: methods and protocols, methods in molecular biology, vol 1308. Springer, New York

    Google Scholar 

  • Tarchevsky IA, Marchenko GN (1991) Cellulose conformation. Cellulose: biosynthesis and structure. Springer, Berlin, pp 156–173

    Book  Google Scholar 

  • Tjandra N, Szabo A, Bax AD (1996) Protein backbone dynamics and 15B chemical shift anisotropy from quantitative measurement of relaxation interference effects. J Am Chem Soc 118(29):6986–6991

    Article  CAS  Google Scholar 

  • Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  PubMed  Google Scholar 

  • Torchia DA (1978) The measurement of proton-enhanced carbon-13 T1 values by method which suppresses artifacts. J Magn Reson 30:613

    CAS  Google Scholar 

  • Tycko R, Dabbagh G, Mirau PA (1989) Determination of chemical shift anisotropy lineshapes in a two-dimensional magic angle spinning NMR experiment. J Magn Reson 85:265–274

    CAS  Google Scholar 

  • Urbanova M, Pavelkova M, Czernek J, Kubova K, Vyslouzil J, Pechova A, Molinkova D, Vyslouzil J, Vetchy D, Brus J (2019) Interaction pathways and structure−chemical transformations of alginate gels in physiological environments. Biomacromolecule 20:4158–4170

    Article  CAS  Google Scholar 

  • Veeman WS (1984) Carbon-13 chemical shift anisotropy. Prog Nucl Magn Reson Spectrosc 16:193–235

    Article  CAS  Google Scholar 

  • Walder BJ, Dey KK, Kaseman DC, Baltisberger JH, Grandinetti PJ (2013) Sideband separation experiments in NMR with phase incremented echo train acquisition. J Chem Phys 138:174203-1-174203–12

    Article  CAS  Google Scholar 

  • Wylie BJ, Rienstra CM (2008) Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. J Chem Phys 128:052207

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Geng Z, Yu Y (2011) Density functional theory (DFT) study on the dehydration of cellulose. Energy Fuels 25:2664–2670

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Manasi Ghosh is grateful to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India(file no. EMR/2016/000249) and SERB-POWER Grant (SPG/2021/000303) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manasi Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, K.K., Gayen, S. & Ghosh, M. Structure and dynamics of sodium alginate as elucidated by chemical shift anisotropy and site-specific spin–lattice relaxation time measurements. Eur Biophys J 50, 963–977 (2021). https://doi.org/10.1007/s00249-021-01559-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-021-01559-9

Keywords

Navigation