Skip to main content
Log in

The importance of hydrophobic interactions in the structure of transcription systems

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Hydrophobic forces play a crucial role in both the stability of B DNA and its interactions with proteins. In the present study, we postulate that the hydrophobic effect is an essential component in establishing specificity in the interaction transcription factor proteins with their consensus DNA sequence partners. The PDB coordinates of more than 50 transcription systems have been used to analyze the hydrophobic attraction of proteins towards their DNA consensus. This analysis includes computing the hydrophobic energy of the interacting molecules by means of their hydrophobic moments. Hydrophobic moments have successfully been used in previous studies involving self-assembly protein systems. In the present case, in spite of some variability, we found specificity in transcription factors when interacting with their respective consensus DNA sequences. By applying our model of biological membrane pattern for hydrophobic interactions, we postulate that hydrophobic forces constitute the necessary intermediate interaction between the unspecific electrostatic attraction for DNA phosphate groups and the very short-range interaction promoting hydrogen bonds. We conclude that hydrophobic interactions serve as the intermediate force guiding transcriptions factors towards the proper hydrogen bonds to their DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

H :

Hydrophobic moment vector

enH :

Hydrophobic energy

h+ :

Total hydrophobicity

h :

Total hydrophilicity

r i :

Position vector of element i (amino acid or nucleotide)

c +, c :

Hydrophobic, hydrophilic centroids

prot.:

Protein

cons.:

Consensus motif DNA

nucl.acid:

Nucleic acid

PDB:

Protein data base

References

  • Boldina G, Ivashchenko A, Régnier M (2009) Using profiles based on nucleotide hydrophobicity to define essential regions for splicing. Int J Biol Sci 5:13–19

    Article  CAS  Google Scholar 

  • Chen S, White A, Love J, Murphy J, Ringe D (2000) Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry 39:10397–10407

    Article  CAS  Google Scholar 

  • Chiu TP, Rao S, Mann RS, Honig B, Rohs R (2017) Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding. Nucl Acids Res 45:12565–12576

    Article  CAS  Google Scholar 

  • Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopra ML (1982) The anatomy of A-, B-, and Z-DNA. Science 216:475–485

    Article  CAS  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of amphiphilicity of a helix. Nature 299:371–374

    Article  CAS  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144

    Article  CAS  Google Scholar 

  • Feng B, Sosa R, Mårtensson A, Jiang K, Tong A, Dorfman K, Takahashi M, Lincoln P, Bustamante C, Westerlund F, Nordén B (2019) Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc Natl Acad Sci USA 116:17169–17174

    Article  CAS  Google Scholar 

  • Gukian KM, Schweitzer BA, Ren RX-F, Sheils CJ, Tahmassebi DC, Kool ET (2000) Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J Am Chem Soc 122:2213–2222

    Article  Google Scholar 

  • Hancock SP, Stella S, Cascio D, Johnson RC (2016) DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis. PLoS ONE 11:e0150189

    Article  Google Scholar 

  • Hummer G (1999) Hydrophobic force field as a molecular alternative to surface-area models. J Am Chem Soc 121:6299–6305

    Article  CAS  Google Scholar 

  • Israelachvili JM (2011) Intermolecular and surface forces, 3rd edn. Academic Press

    Google Scholar 

  • Israelachvili J, Pashley R (1982) The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341–342

    Article  CAS  Google Scholar 

  • Kielkopf CL, White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB, Rees DC (1998) A structural basis for recognition of a•t and t•a base pairs in the minor groove of B-DNA. Science 282:111–115

    Article  CAS  Google Scholar 

  • Krieger E, Vriend G (2014) YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  Google Scholar 

  • Lin MS, Fawzi NL, Head-Gordon T (2007) Hydrophobic potential of mean force as a solvation function for protein structure prediction. Structure 15:727–740. https://doi.org/10.1016/j.str.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Makowski M, Czaplewski C, Liwo A, Scheraga HA (2010) Potential of mean force of association of large hydrophobic particles: toward the nanoscale limit. J Phys Chem B 114:993–1003

    Article  CAS  Google Scholar 

  • Malecka KA, Ho WC, Marmorstein R (2009) Crystal structure of a p53 core tetramer bound to DNA. Oncogene 28:325–333

    Article  CAS  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucl Acids Res 34:D108–D110

    Article  CAS  Google Scholar 

  • McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  CAS  Google Scholar 

  • Meyer E, Rosenberg K, Israelachvili J (2006) Recent progress in understanding hydrophobic interactions. Proc Natl Acad Sci USA 103:15739–15746

    Article  CAS  Google Scholar 

  • Mozo-Villarías A, Querol E (2019) A protein self-assembly model guided by electrostatic and hydrophobic dipole moments. PLoS ONE 14:e0216253

    Article  Google Scholar 

  • Mozo-Villarías A, Cedano JA, Querol E (2003) A simple electrostatic criterion for predicting the thermal stability of proteins. Protein Eng 16:279–286

    Article  Google Scholar 

  • Mozo-Villarías A, Cedano JA, Querol E (2014) A model of protein association based on their hydrophobic and electric interactions. PLoS ONE 9:e110352

    Article  Google Scholar 

  • Mozo-Villarías A, Cedano JA, Querol E (2016) Vector description of electric and hydrophobic interactions in protein homodimers. Eur Biophys J 45:341–346

    Article  Google Scholar 

  • Mozo-Villarías A, Cedano JA, Querol E (2017) Self-assembly of open protein systems: a comprehensive view based on the interactions between 3d hydrophobic and electric dipole moment vectors. J Proteomics Bioinform 10:252–259

    Article  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095

    Article  CAS  Google Scholar 

  • Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chandler D, Garde S (2012) Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J Phys Chem B 116:2498–2503. https://doi.org/10.1021/jp2107523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petsko GA, Ringe D (2004) Bonds that stabilize folded proteins. Protein structure and function. New Science Press Ltd., London, pp 10–11

    Google Scholar 

  • Reißer S, Strandberg E, Streinbrecher T, Ulrich AS (2014) 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys J 106:2385–2394

    Article  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    Article  CAS  Google Scholar 

  • Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS (2010) Origins and specificity in protein-DNA recognition. Annu Rev Biochem 79:233–269

    Article  CAS  Google Scholar 

  • Sarkar A, Kellogg E (2010) Hydrophobicity—shake flasks, protein folding and drug discovery. Curr Top Med Chem 10:67–83

    Article  CAS  Google Scholar 

  • Sauer RT (1995) Minor groove DNArecognition by α-helices. Nature Struct Biol 2:7–9

    Article  CAS  Google Scholar 

  • Silverman BD (2001) Hydrophobic moments of protein structures: spatially profiling the distribution. Proc Natl Acad Sci USA 98:4996–5001

    Article  CAS  Google Scholar 

  • Silverman BD (2003) Hydrophobic moments of tertiary protein structures. Proteins Struct Func Gen 53:880–888

    Article  CAS  Google Scholar 

  • Spolar RS, Record MT (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777–784

    Article  CAS  Google Scholar 

  • Tolstorukov MY, Jernigan RL, Zhurkin VB (2004) Protein–DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J Mol Biol 337:65–76

    Article  CAS  Google Scholar 

  • Tsodikov OV, Biswas T (2011) Structural and thermodynamic signatures of DNA recognition by mycobacterium tuberculosis DnaA. J Mol Biol 410:461–476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministerio de Economía y Competitividad of Spain [BIO2017-84166R, BFU2013-50176-EXP and PID2020-116874R-100] and by the Centre de Referència de R+D de Biotecnologia de la Generalitat de Catalunya. We thank Mrs. Lynn Strother for revising the English text

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Mozo-Villarías.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozo-Villarías, A., Cedano, J. & Querol, E. The importance of hydrophobic interactions in the structure of transcription systems. Eur Biophys J 50, 951–961 (2021). https://doi.org/10.1007/s00249-021-01557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-021-01557-x

Keywords

Navigation