A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA

Abstract

A small-scale ITC benchmarking study was performed involving 9 biophysics laboratories/facilities, to evaluate inter-laboratory and intra-laboratory basal levels of uncertainty. Our prime goal was to assess a number of important factors that can influence both the data gathered by this technique and the thermodynamic parameter values derived therefrom. In its first part, the study involved 5 laboratories and 13 different instruments, working with centrally prepared samples and the same experimental protocol. The second part involved 4 additional laboratories and 6 more instruments, where the users prepared their own samples according to provided instructions and did the experiments following the same protocol as in the first part. The study design comprised: (1) selecting a minimal set of laboratories; (2) providing very stable samples; (3) providing samples not requiring preparation or manipulation; and (4) providing a well-defined and detailed experimental protocol. Thus, we were able to assess: (i) the variability due to instrument and data analysis performed by each user on centrally prepared samples; (ii) the comparability of data retrieved when using 4 different software packages to analyze the same data, besides the data analysis carried out by the different users on their own experimental results; and (iii) the variability due to local sample preparation (second part of the study). Individual values, as well as averages and standard deviations for the binding parameters for EDTA-cation interaction, were used as metrics for comparing the equilibrium association constant (logK), enthalpy of interaction (ΔH), and the so-called “stoichiometry” (n), a concentration-correction factor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adão R, Bai G, Loh W, Bastos M (2012) Chemical calibration of isothermal titration calorimeters: an evaluation of the dilution of propan-1-ol into water as a test reaction using different calorimeters, concentrations, and temperatures. J ChemThermodyn 52:57–63. https://doi.org/10.1016/j.jct.2011.12.018

    CAS  Article  Google Scholar 

  2. Baker M (2016) Reproducibility: seek out stronger science. Nature 537:703–704. https://doi.org/10.1038/nj7622-703a

    Article  Google Scholar 

  3. Baranauskienė L, Petrikaitė V, Matulienė J, Matulis D (2009) Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J MolSci 10:2752–2762

    Google Scholar 

  4. Bastos M (2016) Biocalorimetry: foundations and contemporary approaches, 1st edn. CRC Press. https://doi.org/10.1201/b20161

  5. Begley CG, Ellis LM (2012) Raise standards for preclinical cancer research. Nature 483:531–533. https://doi.org/10.1038/483531a

    CAS  Article  PubMed  Google Scholar 

  6. Brautigam CA, Zhao H, Vargas C, Keller S, Schuck P (2016) Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc 11:882–894. https://doi.org/10.1038/nprot.2016.044. http://www.nature.com/nprot/journal/v11/n5/abs/nprot.2016.044.html#supplementary-information

  7. Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135–151. https://doi.org/10.1146/annurev.biophys.36.040306.132812

    CAS  Article  PubMed  Google Scholar 

  8. Chaires JB, Hansen LD, Keller S, Brautigam CA, Zhao H, Schuck P (2015) Biocalorimetry. Methods 76:1–2. https://doi.org/10.1016/j.ymeth.2015.02.001

    CAS  Article  PubMed  Google Scholar 

  9. Chodera JD, Mobley DL (2013) Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys 42:121–142. https://doi.org/10.1146/annurev-biophys-083012-130318

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Claveria-Gimeno R, Vega S, Abian O, Velazquez-Campoy A (2019) Tinkering with binding polynomials in isothermal titration calorimetry. Methods MolBiol 1964:185–213. https://doi.org/10.1007/978-1-4939-9179-2_14

    CAS  Article  Google Scholar 

  11. Dumas P (2016) Joining thermodynamics and kinetics by kinITC. In: Bastos M (ed) Biocalorimetry: foundations and contemporary approaches. CRC Press, Taylor & Francis, p 20

    Google Scholar 

  12. Freire E (2001) The thermodynamic linkage between protein structure, stability, and function. Methods MolBiol 168:37–68

    CAS  Google Scholar 

  13. Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A-958A

    CAS  Article  Google Scholar 

  14. Hansen LD, Quinn C (2019) Obtaining precise and accurate results by ITC. EurBiophys J 48:825–835. https://doi.org/10.1007/s00249-019-01399-8

    CAS  Article  Google Scholar 

  15. Hansen LD, Fellingham GW, Russell DJ (2011) Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem 409:220–229. https://doi.org/10.1016/j.ab.2010.11.002

    CAS  Article  PubMed  Google Scholar 

  16. Ioannidis JP (2016) Why most clinical research is not useful. PLoS Med 13:e1002049. https://doi.org/10.1371/journal.pmed.1002049

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kantonen SA, Henriksen NM, Gilson MK (2017) Evaluation and minimization of uncertainty in ITC binding measurements: heat error, concentration error, saturation, and stoichiometry. BiochimBiophysActa Gen Subj 1861:485–498. https://doi.org/10.1016/j.bbagen.2016.09.002

    CAS  Article  Google Scholar 

  18. Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073. https://doi.org/10.1021/ac3007522

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kolthoff IM, Elving PJ (1959) Treatise on analytical chemistry. InterscienceEncyclopedia, New York

    Google Scholar 

  20. Mobley A, Linder SK, Braeuer R, Ellis LM, Zwelling L (2013) A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. PLoS One 8:e63221. https://doi.org/10.1371/journal.pone.0063221

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Myszka DG et al (2003) The ABRF-MIRG’02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J Biomol Tech 14:247–269

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paketuryte V, Linkuviene V, Krainer G, Chen WY, Matulis D (2019) Repeatability, precision, and accuracy of the enthalpies and Gibbs energies of a protein-ligand binding reaction measured by isothermal titration calorimetry. EurBiophys J 48:139–152. https://doi.org/10.1007/s00249-018-1341-z

    Article  Google Scholar 

  23. Paketurytė V et al (2020) Uncertainty of a protein-ligand binding constant: asymmetric confidence interval versus standard error. Biophys. J, Eur

    Google Scholar 

  24. Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res 24:1–52. https://doi.org/10.1081/rrs-120037896

    CAS  Article  PubMed  Google Scholar 

  25. Piñeiro Á et al (2019) AFFINImeter: a software to analyze molecular recognition processes from experimental data. Anal Biochem 577:117–134. https://doi.org/10.1016/j.ab.2019.02.031

    CAS  Article  PubMed  Google Scholar 

  26. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discovery 10:712–712. https://doi.org/10.1038/nrd3439-c1

    CAS  Article  PubMed  Google Scholar 

  27. Ràfols C, Bosch E, Barbas R, Prohens R (2016) The Ca2+–EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC). Talanta 154:354–359. https://doi.org/10.1016/j.talanta.2016.03.075

    CAS  Article  PubMed  Google Scholar 

  28. Scheuermann TH, Brautigam CA (2015) High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC. Methods 76:87–98. https://doi.org/10.1016/j.ymeth.2014.11.024

    CAS  Article  PubMed  Google Scholar 

  29. Tellinghuisen J (2005) Optimizing experimental parameters in isothermal titration calorimetry. J Phys Chem B 109:20027–20035. https://doi.org/10.1021/jp053550y

    CAS  Article  PubMed  Google Scholar 

  30. Tellinghuisen J (2012) Designing isothermal titration calorimetry experiments for the study of 1:1 binding: problems with the “standard protocol.” Anal Biochem 424:211–220. https://doi.org/10.1016/j.ab.2011.12.035

    CAS  Article  PubMed  Google Scholar 

  31. Tellinghuisen J (2016) Optimizing isothermal titration calorimetry protocols for the study of 1:1 binding: keeping it simple. BiochimBiophysActa 1860:861–867. https://doi.org/10.1016/j.bbagen.2015.10.011

    CAS  Article  Google Scholar 

  32. Tellinghuisen J (2018) Critique of methods for estimating heats in isothermal titration calorimetry. Anal Biochem 563:79–86. https://doi.org/10.1016/j.ab.2018.08.015

    CAS  Article  PubMed  Google Scholar 

  33. Tellinghuisen J, Chodera JD (2011) Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal Biochem 414:297–299. https://doi.org/10.1016/j.ab.2011.03.024

    CAS  Article  PubMed  Google Scholar 

  34. Vega S, Abian O, Velazquez-Campoy A (2015) A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry. Methods 76:99–115. https://doi.org/10.1016/j.ymeth.2014.09.010

    CAS  Article  PubMed  Google Scholar 

  35. Velázquez-Campoy A, López-Mayorga O, Cabrerizo-Vı́lchez MA (2000) Development of an isothermal titration microcalorimetric system with digital control and dynamic power Peltier compensation. I. Description and basic performance. Rev SciInstrum 71:1824–1831. https://doi.org/10.1063/1.1150543

    Article  Google Scholar 

  36. Velazquez-Campoy A (2015) Geometric features of the Wiseman isotherm in isothermal titration calorimetry. J Therm Anal Calorim 122:1477–1483. https://doi.org/10.1007/s10973-015-4775-x

    CAS  Article  Google Scholar 

  37. Velazquez-Campoy A, Freire E (2005) ITC in the post-genomic era...? Priceless BiophysChem 115:115–124. https://doi.org/10.1016/j.bpc.2004.12.015

    CAS  Article  Google Scholar 

  38. Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protocols 1:186–191

    CAS  Article  Google Scholar 

  39. Wadsö I, Goldberg RN (2001) Standards in isothermal microcalorimetry (IUPAC Technical report). Pure ApplChem 73:1625–1639

    Article  Google Scholar 

  40. Zhao H, Piszczek G, Schuck P (2015) SEDPHAT—a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods (San Diego, Calif) 76:137–148. https://doi.org/10.1016/j.ymeth.2014.11.012

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M.B. acknowledges the financial support from Fundação para a Ciência e Tecnologia (FCT), Portugal, together with FEDER through “Programa Operacional Competitividade e Internacionalização” (POCI), by COMPETE2020 to Projects POCI-01-0145-FEDER-030579 and UIDB/00081/2020. A.V.C. and O.A. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness and European ERDF Funds (MCIU/AEI/FEDER, EU) (BFU2013-47064-P and BFU2016-78232-P to A.V.C.), the Spanish Ministry of Education and Culture (FPU13/3870 to R.C.G.), Fondo de Investigaciones Sanitarias from Instituto de Salud Carlos III and European Union (ERDF/ESF, “Investing in your future”) (PI15/00663 and PI18/00349 to O.A.), Diputación General de Aragón (Protein Targets and Bioactive Compounds Group E45_20R to A.V.C. and Digestive Pathology Group B25_20R to O.A.) and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd). JBC was supported by NIH Grant GM077422. This work was supported by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health. MB gratefully acknowledges the support of Frederico Silva of the Biochemical and Biophysical Technologies Scientific Platform of the Instituto de Investigação e Inovação em Saúde, I3S, Universidade do Porto. We all thank COST Action CA15126, Working Group 4, for the support to this study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Adrian Velazquez-Campoy or Margarida Bastos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: COST Action CA15126, MOBIEU: Between atom and cell.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1312 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velazquez-Campoy, A., Claro, B., Abian, O. et al. A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA. Eur Biophys J (2021). https://doi.org/10.1007/s00249-021-01523-7

Download citation

Keywords

  • Isothermal Titration Calorimetry (ITC)
  • Ligand-binding
  • Standard reaction
  • Benchmark study
  • Data treatment
  • Sample preparation