Skip to main content
Log in

Equilibrium partially folded states of B. licheniformis\(\beta \)-lactamase

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

\(\beta \)-Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A \(\beta \)-lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp\(\rightarrow \)Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis. The Trp\(\rightarrow \)Phe substitutions had little impact on the native conformation, but changed the properties of the partially folded states populated at equilibrium. The results were interpreted in the framework of modern theories of protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya N, Mishra P, Jha SK (2015) Evidence for dry molten globule-like domains in the pH-induced equilibrium folding intermediate of a multidomain protein. J Phys Chem Lett 7:173–179

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Altmeyer M (2016) Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26:547–558

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, Frieden C, Rose GD (2010) Dry molten globule intermediates and the mechanism of protein unfolding. Proteins 78:2725–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21(3):167–195

    Article  CAS  PubMed  Google Scholar 

  • Bychkova V, Semisotnov G, Balobanov V, Finkelstein A (2018) The molten globule concept: 45 years later. Biochemistry (Moscow) 83:S33–S47

    Article  CAS  Google Scholar 

  • Clerico EM, Ermácora MR (2001) Tryptophan mutants of intestinal fatty acid-binding protein: ultraviolet absorption and circular dichroism studies. Arch Biochem Biophys 395:215–224

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE, Pain RH (1980) Unfolding and refolding of Staphylococcus aureus penicillinase by urea-gradient electrophoresis. J Mol Biol 137:431–436

    Article  CAS  PubMed  Google Scholar 

  • Escobar WA, Tan AK, Lewis ER, Fink AL (1994) Site-directed mutagenesis of glutamate-166 in beta-lactamase leads to a branched path mechanism. Biochemistry 33:7619–7626

    Article  CAS  PubMed  Google Scholar 

  • Ferreyra RG, Burgardt NI, Milikowski D, Melen G, Kornblihtt AR, DellAngelica EC, Santomé JA, Ermácora MR (2006) A yeast sterol carrier protein with fatty-acid and fatty-acyl-CoA binding activity. Arch Biochem Biophys 453:197–206

    Article  CAS  PubMed  Google Scholar 

  • Frate M, Lietz E, Santos J, Rossi J, Fink A, Ermácora M (2000) Export and folding of signal-sequenceless Bacillus licheniformis beta-lactamase in Escherichia coli. Eur J Biochem 267:3836–3847

    Article  CAS  PubMed  Google Scholar 

  • Gebhard LG, Risso VA, Santos J, Ferreyra RG, Noguera ME, Ermácora MR (2006) Mapping the distribution of conformational information throughout a protein sequence. J Mol Biol 358:280–288

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Fink AL (1989) Conformational states in. beta.-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28:945–952

    Article  CAS  PubMed  Google Scholar 

  • Jansson JAT (1965) A direct spectrophotometric assay for penicillin \(\beta \)-lactamase (penicillinase). Biochim Biophys Acta 99:171–172

    Article  CAS  PubMed  Google Scholar 

  • Kather I, Jakob RP, Dobbek H, Schmid FX (2008) Increased folding stability of TEM-1 \(\beta \)-lactamase by in vitro selection. J Mol Biol 383:238–251

    Article  CAS  PubMed  Google Scholar 

  • Ledent P, Duez C, Vanhove M, Lejeune A, Fonze E, Charlier P, Rhazi-Filali F, Thamm I, Guillaume G, Samyn B, Devreese B, Van Beeumen J, Lamotte-Brasseur J, Frère JM (1997) Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett 413:194–196

    Article  CAS  PubMed  Google Scholar 

  • Lella M, Mahalakshmi R (2017) Metamorphic proteins: emergence of dual protein folds from one primary sequence. Biochemistry 56:2971–2984

    Article  CAS  PubMed  Google Scholar 

  • Levinthal C (1969) How to fold graciously. In: Debrunner P, Tsibris J, Munck E (eds) Mossbauer spectroscopy in biological systems. Proceedings of a meeting held at Allerton house, Monticello, Illinois. University of Illinois Press, Urbana, Illinois, pp 22–24

  • Lewis ER, Winterberg KM, Fink AL (1997) A point mutation leads to altered product specificity in beta-lactamase catalysis. Proc Natl Acad Sci USA 94:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336340

    Article  CAS  Google Scholar 

  • Lietz EJ, Truher H, Kahn D, Hokenson MJ, Fink AL (2000) Lysine-73 is involved in the acylation and deacylation of beta-lactamase. Biochemistry 39:4971–4981

    Article  CAS  PubMed  Google Scholar 

  • Moews P, Knox J, Dideberg O, Charlier P, Frère J (1990) Beta-lactamase of Bacillus licheniformis 749/C at 2 Å resolution. Proteins 7:156–171

    Article  CAS  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) C The art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • Primo ME, Klinke S, Sica MP, Goldbaum FA, Jakoncic J, Poskus E, Ermácora MR (2008) Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2. J Biol Chem 283:4674–4681

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn O (1995) Molten globule and protein folding. In: Advances in protein chemistry, vol 47. Elsevier, Amsterdam, pp 83–229

  • Ptitsyn O, Pain R, Semisotnov G, Zerovnik E, Razgulyaev O (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24

    Article  CAS  PubMed  Google Scholar 

  • Risso VA, Primo ME, Ermácora MR (2009) Re-engineering a beta-lactamase using prototype peptides from a library of local structural motifs. Protein Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Risso VA, Primo ME, Brunet JE, Sotomayor CP, Ermácora MR (2010) Optical studies of single-tryptophan B. licheniformis \(\beta \)-lactamase variants. Biophys Chem 151:111–118

    Article  CAS  PubMed  Google Scholar 

  • Risso VA, Acierno JP, Capaldi S, Monaco HL, Ermácora MR (2012) X-ray evidence of a native state with increased compactness populated by tryptophan-less B. licheniformis \(\beta \)-lactamase. Protein Sci 21:964–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson B, Pain R (1973) Conformation of biological molecules and polymers. In: Bergmann ED, Pullman B (eds) Proceedings of the 5th Jerusalem Symposium. Academic Press, London, pp 161–172

  • Robson B, Pain R (1976) The mechanism of folding of globular proteins. equilibria and kinetics of conformational transitions of penicillinase from Staphylococcus aureus involving a state of intermediate conformation. Biochem J 155:331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro MM, Bolen D (1992) A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31:4901–4907

    Article  CAS  PubMed  Google Scholar 

  • Santos J, Gebhard LG, Risso VA, Ferreyra RG, Rossi JP, Ermácora MR (2004) Folding of an abridged beta-lactamase. Biochemistry 43:1715–1723

    Article  CAS  PubMed  Google Scholar 

  • Santos J, Risso VA, Sica MP, Ermácora MR (2007) Effects of serine-to-cysteine mutations on \(\beta \)-lactamase folding. Biophys J 93:1707–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, DasGupta C (1996) Characterization of a molten globule intermediate during GdnHCl-induced unfolding of RTEM beta-lactamase from Escherichia coli. Biochim Biophys Acta 1296:85–94

    Article  PubMed  Google Scholar 

  • Savitzky A, Golay M (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P, Galleni M, Matagne A, Dumoulin M (2012) Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein. PLoS One 7:e31253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas R, Feeney J, Nicholson R, Pain R, Roberts G (1983) Identification by nmr spectroscopy of a stable intermediate structure in the unfolding of staphylococcal \(\beta \)-lactamase. Biochem J 215:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsytlonok M, Itzhaki LS (2013) The hows and whys of protein folding intermediates. Arch Biochem Biophys 531:14–23

    Article  CAS  PubMed  Google Scholar 

  • Ureta DB, Craig PO, Gómez GE, Delfino JM (2007) Assessing native and non-native conformational states of a protein by methylene carbene labeling: the case of Bacillus licheniformis beta-lactamase. Biochemistry 46:14567–14577

    Article  CAS  PubMed  Google Scholar 

  • Uversky V, Ptitsyn O (1994) “Partly folded” state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry 33:2782–2791

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Semisotnov GV, Pain RH, Ptitsyn OB (1992) ’All-or-none’ mechanism of the molten globule unfolding. FEBS Lett 314:89–92

    Article  CAS  PubMed  Google Scholar 

  • Vandenameele J, Lejeune A, Di Paolo A, Brans A, Frère JM, Schmid FX, Matagne A (2010) Folding of class a \(\beta \)-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways. Biochemistry 49:4264–4275

    Article  CAS  PubMed  Google Scholar 

  • Vandevenne M, Filee P, Scarafone N, Cloes B, Gaspard G, Yilmaz N, Dumoulin M, François JM, Frère JM, Galleni M (2007) The Bacillus licheniformis blap \(\beta \)-lactamase as a model protein scaffold to study the insertion of protein fragments. Protein Sci 16:2260–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhove M, Raquet X, Frère JM (1995) Investigation of the folding pathway of the TEM-1 \(\beta \)-lactamase. Proteins: structure. Funct Bioinform 22:110–118

    Article  CAS  Google Scholar 

  • Vanhove M, Raquet X, Palzkill T, Pain RH, Frère JM (1996) The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 \(\beta \)-lactamase is the trans to cis isomerization of a non-proline peptide bond. Proteins 25:104–111

    Article  CAS  PubMed  Google Scholar 

  • Vanhove M, Guillaume G, Ledent P, Richards JH, Pain RH, Frere JM (1997) Kinetic and thermodynamic consequences of the removal of the Cys-77-Cys-123 disulphide bond for the folding of TEM-1 beta-lactamase. Biochem J 321:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhove M, Lejeune A, Pain RH (1998) Beta-lactamases as models for protein-folding studies. Cell Mol Life Sci 54:372–377

    Article  CAS  PubMed  Google Scholar 

  • Wolynes PG (2005) Energy landscapes and solved protein folding problems. Philos Trans R Soc Lond B Biol Sci 363(1827):453–457

    Article  CAS  Google Scholar 

  • Zahn R, Axmann S, Rucknagel K, Jaeger E, Laminet A, Pluckthun A (1994) Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL. I. GroEL recognizes the signal sequences of beta-lactamase precursor. J Mol Biol 242:150–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CONICET (PIP-GI 11220130100277CO) and the Universidad Nacional de Quilmes (PP 53/1002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario R. Ermácora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risso, V.A., Ermácora, M.R. Equilibrium partially folded states of B. licheniformis\(\beta \)-lactamase. Eur Biophys J 48, 341–348 (2019). https://doi.org/10.1007/s00249-019-01361-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01361-8

Keywords

Navigation