Skip to main content
Log in

A topological transition from bimolecular quadruplex to G-triplex/tri-G-quadruplex exhibited by truncated double repeats of human telomere

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Human telomeric G-rich sequences can fold back into various conformations depending upon the salt (Na+ or K+) at physiological pH. On the basis of results obtained by native PAGE electrophoresis, circular dichroism, and UV-melting experiments, we report here that truncated sequences of human telomere (d-GGGTTAGGG; GM9, d-AGGGTTAGGG; GM10, d-TAGGGTTAGGG; GM11) adopt a varied range of quadruplex conformations as a function of the cation present. By correlating CD and gel electrophoresis experiments; it was concluded that the GM9 oligonucleotide can self-associate to form a tetramer quadruplex (antiparallel; AP) in Na+ solution and a mixture of G-triplex (AP) or tri-G-quadruplex (parallel; P) along with a tetramer G-quadruplex structure (AP) in K+. The GM10 oligonucleotide formed a bimolecular G-quadruplex in both Na+ and K+ solutions, while GM11 associated to form a bimolecular G-quadruplex (AP) structure in Na+ solution and a mixture of bimolecular G-quadruplex (AP) and bimolecular G-quadruplex (P) along with parallel G-triplex or antiparallel tri-G-quadruplex in K+. All the UV-melting profiles, thermal difference spectra, and CD melting curves suggested the formation of a variety of G-quadruplex conformations by the DNA sequences studied in Na+ and K+ ions. Hypothetical models for different conformations adopted by these DNA molecules have also been proposed, which may further enhance our knowledge about the divergent topologies of guanine quadruplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal P, Hatzakis E, Guo K, Carver M, Yang D (2013) Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res 41(22):10584–10592

    Article  CAS  Google Scholar 

  • Amirbekyan K, Mansot J, Ohara K, Markarian SA, Vasseur JJ, Smietana M (2018) Template-directed excimer formation via specific non-covalent interactions between pyrene guanidinium derivatives and nucleic acids. Tetrahedron Lett 59(3):295–298

    Article  CAS  Google Scholar 

  • Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res 20(15):4061–4067

    Article  CAS  Google Scholar 

  • Banihashemian SM, Periasamy V, Mohammadi SM, Ritikos R, Rahman SA (2013) Optical characterization of oligonucleotide DNA influenced by magnetic fields. Molecules 18(10):11797–11808

    Article  CAS  Google Scholar 

  • Cai H, Zhou C, Yang Q, Ai T, Huang Y, Lv Y, Geng J, Xiao D (2017) Single-molecule investigation of human telomeric G-quadruplex interactions with Thioflavin T. Chin Chem Lett 29(3):531–534

    Article  Google Scholar 

  • Chariker JH, Miller DM, Rouchka EC (2016) Computational analysis of G-quadruplex forming sequences across chromosomes reveals high density patterns near the terminal ends. PLoS One 11(10):e0165101

    Article  Google Scholar 

  • Cheng M, Zhou J, Jia G, Ai X, Mergny JL, Li C (2017) Relations between the loop transposition of DNA G-quadruplex and the catalytic function of DNAzyme. Biochim Biophys Acta (BBA) Gen Subj 1861:1913

    Article  CAS  Google Scholar 

  • Clark GR, Pytel PD, Squire CJ, Neidle S (2003) Structure of the first parallel DNA quadruplex–drug complex. J Am Chem Soc 125(14):4066–4067

    Article  CAS  Google Scholar 

  • Cutler G, Perry KM, Tjian R (1998) Adf-1 is a nonmodular transcription factor that contains a TAF-binding Myb-like motif. Mol Cell Biol 18(4):2252–2261

    Article  CAS  Google Scholar 

  • Doghaei AV, Housaindokht MR, Bozorgmehr MR (2015) Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: insights from molecular dynamics simulation. J Theor Biol 7(364):103–112

    Article  Google Scholar 

  • Doidge R, Mittal S, Aslam A, Winkler GS (2012) The anti-proliferative activity of BTG/TOB proteins is mediated via the Caf1a (CNOT7) and Caf1b (CNOT8) deadenylase subunits of the Ccr4-not complex. PLoS One 7(12):e51331

    Article  CAS  Google Scholar 

  • Duskova K, Sierra S, Arias-Pérez MS, Gude L (2016) Human telomeric G-quadruplex DNA interactions of N-phenanthroline glycosylamine copper(II) complexes. Bioorg Med Chem 24(1):33–41

    Article  CAS  Google Scholar 

  • Fang G, Cech TR (1993) The β subunit of oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74(5):875–885

    Article  CAS  Google Scholar 

  • Jha NS, Mishra S, Mamidi AS, Mishra A, Jha SK, Surolia A (2016) Targeting human telomeric G-quadruplex DNA with curcumin and its synthesized analogues under molecular crowding conditions. RSC Adv 6(9):7474–7487

    Article  CAS  Google Scholar 

  • Kaushik M, Bansal A, Saxena S, Kukreti S (2007) Possibility of an antiparallel (tetramer) quadruplex exhibited by the double repeat of the human telomere. Biochemistry 46(24):7119–7131

    Article  CAS  Google Scholar 

  • Kaushik M, Kaushik S, Kukreti S (2016) Exploring the characterization tools of guanine-quadruplexes. Front Biosci (Landmark edition) 1(21):468–478

    Article  Google Scholar 

  • Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH (2002) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 124(10):2098–2099

    Article  CAS  Google Scholar 

  • Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH (2003) The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Can Res 63(12):3247–3256

    CAS  Google Scholar 

  • Kolyada AK, Vaiserman AM, Krasnenkov DS (2016) Studies of telomere length in patients with Parkinson’s disease. Neurosci Behav Physiol 46(3):344–347

    Article  CAS  Google Scholar 

  • Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725

    Article  CAS  Google Scholar 

  • Lauria A, Terenzi A, Bartolotta R, Bonsignore R, Perricone U, Tutone M, Martorana A, Barone G, Almerico Maria A (2014) Does ligand symmetry play a role in the stabilization of DNA G-quadruplex host-guest complexes? Curr Med Chem 21(23):2665–2690

    Article  CAS  Google Scholar 

  • Li F, Zhou J, Xu M, Yuan G (2016) Investigation on the formation, conversion and bioactivity of a G-quadruplex structure in the PALB2 gene. Int J Biol Macromol 29(83):242–248

    Article  Google Scholar 

  • Li F, Zhou J, Xu M, Yuan G (2018a) Exploration of G-quadruplex function in c-Myb gene and its transcriptional regulation by topotecan. Int J Biol Macromol 1(107):1474–1479

    Article  Google Scholar 

  • Li S, Liu C, Gong H, Chen C, Chen X, Cai C (2018b) Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21. Talanta 1(178):974–979

    Article  Google Scholar 

  • Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y, Patel DJ, Luu KN, Phan AT (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 131(12):4301–4309

    Article  CAS  Google Scholar 

  • Lim KW, Ng VC, Martín-Pintado N, Heddi B, Phan AT (2013) Structure of the human telomere in Na+ solution: an antiparallel (2 + 2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res 41(22):10556–10562

    Article  CAS  Google Scholar 

  • Limongelli V, De Tito S, Cerofolini L, Fragai M, Pagano B, Trotta R, Cosconati S, Marinelli L, Novellino E, Bertini I, Randazzo A (2013) The G-triplex DNA. Angew Chem Int Ed 52(8):2269–2273

    Article  CAS  Google Scholar 

  • Lin C, Yang D (2017) Human telomeric G-quadruplex structures, and G-quadruplex-interactive compounds. Telomeres Telomerase Methods Protoc 1587:171–196

    Article  CAS  Google Scholar 

  • Liu H, Wang YS, Tang X, Yang HX, Chen SH, Zhao H, Liu SD, Zhu YF, Wang XF, Huang YQ (2016) A novel fluorescence aptasensor for 8-hydroxy-2′-deoxyguanosine based on the conformational switching of K+-stabilized G-quadruplex. J Pharm Biomed Anal 25(118):177–182

    Article  CAS  Google Scholar 

  • Luca AD, Sacchetta P, Nieddu M, Ilio CD, Favaloro B (2007) Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxidereductase B1 (MsrB1) promoter. BMC Mol Biol 8:39

    Article  Google Scholar 

  • Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z (2014) Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 42(15):10196–10207

    Article  CAS  Google Scholar 

  • Mergny JL, Li J, Lacroix L, Amrane S, Chaires JB (2005) Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res 33(16):e138

    Article  Google Scholar 

  • Musso L, Mazzini S, Rossini A, Castagnoli L, Scaglioni L, Artali R, Di Nicola M, Zunino F, Dallavalle S (2018) c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach. Biochim Biophys Acta (BBA) Gen Subj 1862(3):615–629

    Article  CAS  Google Scholar 

  • Onel B, Lin C, Yang D (2014) DNA G-quadruplex and its potential as an anticancer drug target. Sci China Chemis 57(12):1605–1614

    Article  CAS  Google Scholar 

  • Ouellette MM, Wright WE, Shay JW (2011) Targeting telomerase-expressing cancer cells. J Cell Mol Med 15(7):1433–1442

    Article  CAS  Google Scholar 

  • Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876

    Article  CAS  Google Scholar 

  • Piazza A, Cui X, Adrian M, Samazan F, Heddi B, Phan AT, Nicolas AG (2017) Non-canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae. eLife 6:e26884. https://doi.org/10.7554/eLife.26884

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirh R, Šket P, Plavec J (2011) NMR study of a potential role of anions on folding of dimeric G-quadruplex in aqueous solution. Collect Symp Ser 12:226–229

    Article  CAS  Google Scholar 

  • Rachwal PA, Findlow IS, Werner JM, Brown T, Fox KR (2007) Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res 35(12):4214–4222

    Article  CAS  Google Scholar 

  • Ramos-Alemán F, González-Jasso E, Pless RC (2018) Use of alternative alkali chlorides in RT and PCR of polynucleotides containing G quadruplex structures. Anal Biochem 15(543):43–50

    Article  Google Scholar 

  • Ray S, Bandaria JN, Qureshi MH, Yildiz A, Balci H (2014) G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proc Natl Acad Sci 111(8):2990–2995

    Article  CAS  Google Scholar 

  • Shalaby T, Fiaschetti G, Nagasawa K, Shin-Ya K, Baumgartner M, Grotzer M (2013) G-quadruplexes as potential therapeutic targets for embryonal tumors. Molecules 18(10):12500–12537

    Article  CAS  Google Scholar 

  • Šket P, Črnugelj M, Plavec J (2005) Identification of mixed di-cation forms of G-quadruplex in solution. Nucleic Acids Res 33(11):3691–3697

    Article  Google Scholar 

  • Stefanovic S, DeMarco BA, Underwood A, Williams KR, Bassell GJ, Mihailescu MR (2015) Fragile X mental retardation protein interactions with a G quadruplex structure in the 3′-untranslated region of NR2B mRNA. Mol Biosyst 11(12):3222–3230

    Article  CAS  Google Scholar 

  • Stegle O, Payet L, Mergny JL, MacKay DJ, Huppert JL (2009) Predicting and understanding the stability of G-quadruplexes. Bioinformatics 25(12):i374–i1382

    Article  CAS  Google Scholar 

  • Sun H, Chen H, Zhang X, Liu Y, Guan A, Li Q, Yang Q, Shi Y, Xu S, Tang Y (2016) Colorimetric detection of sodium ion in serum based on the G-quadruplex conformation related DNAzyme activity. Anal Chim Acta 17(912):133–138

    Article  Google Scholar 

  • Tan W, Yi L, Zhu Z, Zhang L, Zhou J, Yuan G (2018) Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH4 +, molecular crowding environment and jatrorrhizine derivatives. Talanta 1(179):337–343

    Article  Google Scholar 

  • Vasko T, Kaifie A, Stope MB, Kraus T, Ziegler P (2017) Telomeres and telomerase in hematopoietic dysfunction: prognostic implications and pharmacological interventions. Int J Mol Sci 18(11):2267

    Article  Google Scholar 

  • Welsh SJ, Dale AG, Lombardo CM, Valentine H, De La Fuente M, Schatzlein A, Neidle S (2013) Inhibition of the hypoxia-inducible factor pathway by a G-quadruplex binding small molecule. Sci Rep 3:2799

    Article  Google Scholar 

  • Xiao CD, Ishizuka T, Xu Y (2017) Antiparallel RNA G-quadruplex formed by human telomere RNA containing 8-bromoguanosine. Sci Rep 7(1):6695

    Article  Google Scholar 

  • Xing H, Gu W, Xu D, Tian F, Yao L, Wang Z, Hu X (2018) A simple fluorescent assay for cyromazine detection in raw milk by using CYR-stabilized G-quadruplex formation. RSC Adv 8(5):2418–2425

    Article  CAS  Google Scholar 

  • Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d [AGGG (TTAGGG) 3] in K+ solution. Bioorg Med Chem 14(16):5584–5591

    Article  CAS  Google Scholar 

  • Xu Y, Ishizuka T, Yang J, Ito K, Katada H, Komiyama M, Hayashi T (2012) Oligonucleotide models of telomeric DNA and RNA form a Hybrid G-quadruplex structure as a potential component of telomeres. J Biol Chem 287(50):41787–41796

    Article  CAS  Google Scholar 

  • Zhang N, Phan AT, Patel DJ (2005) (3 + 1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex. J Am Chem Soc 127(49):17277–17285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Delhi for its R&D Grants. Financial support by the Council of Scientific and Industrial Research to Mohan Kumar is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikant Kukreti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Kaushik, M. & Kukreti, S. A topological transition from bimolecular quadruplex to G-triplex/tri-G-quadruplex exhibited by truncated double repeats of human telomere. Eur Biophys J 47, 903–915 (2018). https://doi.org/10.1007/s00249-018-1312-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1312-4

Keywords

Navigation