Skip to main content

Spatiotemporal relationships defining the adaptive gating of the bacterial mechanosensitive channel MscS

Abstract

Adaptive desensitization and inactivation are common properties of most ion channels and receptors. The mechanosensitive channel of small conductance MscS, which serves as a low-threshold osmolyte release valve in most bacteria, inactivates not from the open, but from the resting state under moderate tensions. This mechanism enables the channel to respond differently to slow tension ramps versus abruptly applied stimuli. In this work, we present a reconstruction of the energy landscape for MscS transitions based on patch current kinetics recorded under special pressure protocols. The data are analyzed with a three-state continuous time Markov model, where the tension-dependent transition rates are governed by Arrhenius-type relations. The analysis provides assignments to the intrinsic opening, closing, inactivation, and recovery rates as well as their tension dependencies. These parameters, which define the spatial (areal) distances between the energy wells and the positions of barriers, describe the tension-dependent distribution of the channel population between the three states and predict the experimentally observed dynamic pulse and ramp responses. Our solution also provides an analytic expression for the area of the inactivated state in terms of two experimentally accessible parameters: the tension at which inactivation probability is maximized, γ*, and the midpoint tension for activation, γ0.5. The analysis initially performed on Escherichia coli MscS shows its applicability to the recently characterized MscS homolog from Pseudomonas aeruginosa. Inactivation appears to be a common property of low-threshold MscS channels, which mediate proper termination of the osmotic permeability response and contribute to the environmental fitness of bacteria.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Akitake B, Anishkin A, Sukharev S (2005) The “dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125:143–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akitake B, Anishkin A, Liu N, Sukharev S (2007) Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat Struct Mol Biol 14:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Alloui A, Zimmermann K, Mamet J, Duprat F, Noël J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C et al (2006) TREK-1, a K + channel involved in polymodal pain perception. EMBO J 25:2368–2376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anishkin A, Akitake B, Sukharev S (2008a) Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys J 94:1252–1266

    Article  PubMed  CAS  Google Scholar 

  • Anishkin A, Kamaraju K, Sukharev S (2008b) Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. J Gen Physiol 132:67–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  PubMed  CAS  Google Scholar 

  • Belyy V, Kamaraju K, Akitake B, Anishkin A, Sukharev S (2010a) Adaptive behavior of bacterial mechanosensitive channels is coupled to membrane mechanics. J Gen Physiol 135:641–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belyy V, Anishkin A, Kamaraju K, Liu N, Sukharev S (2010b) The tension-transmitting “clutch” in the mechanosensitive channel MscS. Nat Struct Mol Biol 17:451–458

    Article  PubMed  CAS  Google Scholar 

  • Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187

    Article  PubMed  CAS  Google Scholar 

  • Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R (2012) Single-cell census of mechanosensitive channels in living bacteria. PLoS One 7:e33077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bialecka-Fornal M, Lee HJ, Phillips R (2015) The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J Bacteriol 197:231–237

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Moe PC (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7:420–424

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Sukharev SI, Moe PC, Schroeder MJ, Guy HR, Kung C (1996) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J 15:4798–4805

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  • Boer M, Anishkin A, Sukharev S (2011) Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time. Biochemistry 50:4087–4096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Booth IR (2014) Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr Opin Microbiol 18:16–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Booth IR, Blount P (2012) The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 194:4802–4809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Çetiner U, Rowe I, Schams A, Mayhew C, Rubin D, Anishkin A, Sukharev S (2017) Tension-activated channels in the mechanism of osmotic fitness in Pseudomonas aeruginosa. J Gen Physiol 149:595–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc R Soc Lond B Biol Sci 199:231–262

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Hatton CJ, Hawkes AG (2003) The quality of maximum likelihood estimates of ion channel rate constants. J Physiol (Lond) 547:699–728

    Article  CAS  Google Scholar 

  • Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR, Stephen TL, Miller S, Booth IR (2012) Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels (Austin) 6:272–281

    Article  CAS  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thümmler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M et al (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD (2017) CHARMM36 m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27

    Google Scholar 

  • Kamaraju K, Sukharev S (2008) The membrane lateral pressure-perturbing capacity of parabens and their effects on the mechanosensitive channel directly correlate with hydrophobicity. Biochemistry 47:10540–10550

    Article  PubMed  CAS  Google Scholar 

  • Kamaraju K, Gottlieb PA, Sachs F, Sukharev S (2010) Effects of GsMTx4 on bacterial mechanosensitive channels in inside-out patches from giant spheroplasts. Biophys J 99:2870–2878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamaraju K, Belyy V, Rowe I, Anishkin A, Sukharev S (2011) The pathway and spatial scale for MscS inactivation. J Gen Physiol 138:49–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    Article  PubMed  CAS  Google Scholar 

  • Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Naismith JH, Booth IR (2012) Bacterial mechanosensitive channels–MscS: evolution’s solution to creating sensitivity in function. Annu Rev Biophys 41:157–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S et al (2007) Arabidopsis plasma membrane protein crucial for Ca2 + influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Nakayama Y, Yoshimura K, Iida H (2013) Electrophysiological characterization of the mechanosensitive channel MscCG in Corynebacterium glutamicum. Biophys J 105:1366–1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicolai C, Sachs F (2013) Solving ion channel kinetics with the qub SOFTWARE. Biophys Rev Lett 08:191–211

    Article  Google Scholar 

  • Norris JR (1998) Markov chains. Cambridge University Press, Cambridge

  • Okada K, Moe PC, Blount P (2002) Functional design of bacterial mechanosensitive channels. Comparisons and contrasts illuminated by random mutagenesis. J Biol Chem 277:27682–27688

    Article  PubMed  CAS  Google Scholar 

  • Prole DL, Taylor CW (2013) Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One 8:e66068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin F, Auerbach A, Sachs F (1996) Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J 70:264–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Retailleau K, Duprat F (2014) Polycystins and partners: proposed role in mechanosensitivity. J Physiol (Lond) 592:2453–2471

    Article  CAS  Google Scholar 

  • Ritort F (2004) Work fluctuations, transient violations of the second law and free-energy recovery methods: perspectives in theory and experiments. In: Dalibard J, Duplantier B, Rivasseau V (eds) Poincaré Seminar 2003. Basel, Birkhäuser Basel, pp 193–226

    Chapter  Google Scholar 

  • Rowe I, Elahi M, Huq A, Sukharev S (2013) The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae. J Gen Physiol 142:75–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schlierf M, Li H, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101:7299–7304

    Article  PubMed  CAS  Google Scholar 

  • Schnakenberg J (1976) Network theory of microscopic and macroscopic behavior of master equation systems. Rev Mod Phys 48:571–585

    Article  Google Scholar 

  • Schumann U, Edwards MD, Rasmussen T, Bartlett W, van West P, Booth IR (2010) YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. Proc Natl Acad Sci USA 107:12664–12669

    Article  PubMed  Google Scholar 

  • Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics. Prentice Hall Englewood Cliffs, New Jersey

    Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113:525–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Arch 467:95–99

    Article  PubMed  CAS  Google Scholar 

  • Walsh CM, Bautista DM, Lumpkin EA (2015) Mammalian touch catches up. Curr Opin Neurobiol 34:133–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their detailed comments and suggestions for the manuscript. The work was supported by NIH R21AI105655 and RO1 GM107652 Grants to SS. UC was supported by the U.S. Department of Education GAANN “Mathematics in Biology” Scholarship. UC is also indebted to Drs. Oren Raz (Weizmann Institute of Science) and Yiğit Subaşı (Los Alamos National Laboratory) for their stimulating discussions. The authors thank Ms. Stephanie Sansbury for cloning MscS into a tightly-regulated pBAD expression system and Madolyn Britt for editorial comments.

Author information

Authors and Affiliations

Authors

Contributions

UC developed the theoretical formalism, designed and performed the experiments. AA designed the structural models of MscS and analyzed the lateral expansion area. UC, AA and SS wrote the manuscript.

Corresponding authors

Correspondence to Uğur Çetiner or Sergei Sukharev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1422 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çetiner, U., Anishkin, A. & Sukharev, S. Spatiotemporal relationships defining the adaptive gating of the bacterial mechanosensitive channel MscS. Eur Biophys J 47, 663–677 (2018). https://doi.org/10.1007/s00249-018-1303-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1303-5

Keywords

  • MscS
  • Osmotic fitness
  • Markov chains
  • Energy landscape