The self-association and thermal denaturation of caprine and bovine β-lactoglobulin

  • Jennifer M. Crowther
  • Jane R. Allison
  • Grant A. Smolenski
  • Alison J. Hodgkinson
  • Geoffrey B. Jameson
  • Renwick C. J. Dobson
Original Article
  • 8 Downloads

Abstract

Milk components, such as proteins and lipids, have different physicochemical properties depending upon the mammalian species from which they come. Understanding the different responses of these milks to digestion, processing, and differences in their immunogenicity requires detailed knowledge of these physicochemical properties. Here we report on the oligomeric state of β-lactoglobulin from caprine milk, the most abundant protein present in the whey fraction. At pH 2.5 caprine β-lactoglobulin is predominantly monomeric, whereas bovine β-lactoglobulin exists in a monomer–dimer equilibrium at the same protein concentrations. This behaviour was also observed in molecular dynamics simulations and can be rationalised in terms of the amino acid substitutions present between caprine and bovine β-lactoglobulin that result in a greater positive charge on each subunit of caprine β-lactoglobulin at low pH. The denaturation of β-lactoglobulin when milk is heat-treated contributes to the fouling of heat-exchange surfaces, reducing yields and increasing cleaning costs. The bovine and caprine orthologues of β-lactoglobulin display different responses to thermal treatment, with caprine β-lactoglobulin precipitating at higher pH values than bovine β-lactoglobulin (pH 7.1 compared to pH 5.6) that are closer to the natural pH of these milks (pH 6.7). This property of caprine β-lactoglobulin likely contributes to the reduced heat stability of caprine milk compared to bovine milk at its natural pH.

Keywords

β-Lactoglobulin Milk Whey protein Allergen 

Notes

Acknowledgements

R.C.J.D. and J.M.C. acknowledge the following for funding support, in part: (1) the New Zealand Ministry of Business, Innovation and Employment Research Grant (C10X1203), (2) the New Zealand Royal Society Marsden Fund (15-UOC032), (3) the Biomolecular Interaction Centre, University of Canterbury, and (4) The Riddet Institute. J.R.A. is supported by a Rutherford Discovery Fellowship (15-MAU-001) and a Marsden Grant (15-UOA-105).

References

  1. Almaas H, Cases A, Devold TG, Holm H, Langsrud T, Aabakken L, Aadnoey T, Vegarud GE (2006) In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int Dairy J 16:961–968CrossRefGoogle Scholar
  2. Anema S, Stanley D (1998) Heat-induced, pH-dependent behaviour of protein in caprine milk. Int Dairy J 8:917–923CrossRefGoogle Scholar
  3. Azuara C, Lindahl E, Koehl P, Orland H, Delarue M (2006) PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson–Boltzmann treatment of macromolecule electrostatics. Nucleic Acids Res 34:38–42CrossRefGoogle Scholar
  4. Ball DW (2006) Field guide to spectroscopy. SPIE Press, BellinghamCrossRefGoogle Scholar
  5. Ballester M, Sánchez A, Folch J (2005) Polymorphisms in the goat β-lactoglobulin gene. J Dairy Res 72:379–384CrossRefPubMedGoogle Scholar
  6. Bellioni-Businco B, Paganelli R, Lucenti P (1999) Allergenicity of goat’s milk in children with cow’s milk allergy. J Allergy Clin Immunol 103(6):1191–1194CrossRefPubMedGoogle Scholar
  7. Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. D. Reidel Publishing Company, Dordrecht, pp 331–342Google Scholar
  8. Berendsen H, Postma J, Gunsteren W, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  9. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  10. Brookes E, Demeler B (2008) Parallel computational techniques for the analysis of sedimentation velocity experiments in ultrascan. Colloid Polym Sci 286:139–148CrossRefGoogle Scholar
  11. Creamer LK, Plowman JE, Liddell MJ, Smith MH, Hill JP (1998) Micelle stability: kappa-casein structure and function. J Dairy Sci 81:3004–3012CrossRefPubMedGoogle Scholar
  12. Crowther J, Lassé M, Suzuki H, Kessans S, Loo T, Norris G, Hodgkinson A, Jameson G, Dobson R (2014) Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin. FEBS Lett 588:3816–3822CrossRefPubMedGoogle Scholar
  13. De Jong P (1997) Impact and control of fouling in milk processing. Trends Food Sci Technol 8:401–405CrossRefGoogle Scholar
  14. Demeler B, Gorbet G (2016) Analytical ultracentrifugation data analysis with UltraScan-III. Ch. 8. In: Uchiyama S, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer, Berlin, pp 119–143CrossRefGoogle Scholar
  15. Demeler B, Holde K (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288CrossRefPubMedGoogle Scholar
  16. Demeler B, Brookes E, Wang R, Schirf V, Kim C (2010) Characterization of reversible associations by sedimentation velocity with UltraScan. Macromol Biosci 10:775–782CrossRefPubMedGoogle Scholar
  17. Folch JM, Coll A, Sanchez A (1994) Complete sequence of the caprine beta-lactoglobulin gene. J Dairy Sci 77:3493–3497CrossRefPubMedGoogle Scholar
  18. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and analysis tools on the ExPASy server. Humana Press Inc., TotawaCrossRefGoogle Scholar
  19. Gaucheron F (2005) The minerals of milk. Reprod Nutr Dev 45:473–483CrossRefPubMedGoogle Scholar
  20. Haenlein G (2004) Goat milk in human nutrition. Small Rumin Res 51:155–163CrossRefGoogle Scholar
  21. Havea P, Singh H, Creamer LK (2001) Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment. J Dairy Res 68:483–497CrossRefPubMedGoogle Scholar
  22. Henry G, Mollé D, Morgan F, Fauquant J, Bouhallab S (2002) Heat-induced covalent complex between casein micelles and beta-lactoglobulin from goat’s milk: identification of an involved disulfide bond. J Agric Food Chem 50:185–191CrossRefPubMedGoogle Scholar
  23. Hess B, Bekker H, Berendsen H (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  24. Hong Y, Creamer L (2002) Changed protein structures of bovine β-lactoglobulin B and α-lactalbumin as a consequence of heat treatment. Int Dairy J 12:345–359CrossRefGoogle Scholar
  25. Humphrey Q, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  26. Kapila R, Kavadi P, Kapila S (2013) Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Rumin Res 112:191–198CrossRefGoogle Scholar
  27. Kontopidis G, Holt C, Sawyer L (2004) Invited review: β-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87:785–796CrossRefPubMedGoogle Scholar
  28. Kontopidis G, Gilliver A, Sawyer L (2014) Ovine β-lactoglobulin at atomic resolution. Acta Crystallogr F Struct Biol Commun 70:1498–1503CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kuwata K, Era S, Hoshino M, Forge V, Goto Y, Batt C (1999) Solution structure and dynamics of bovine β-lactoglobulin A. Protein Sci 8:2541–2545CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lara-Villoslada F, Olivares M, Jiménez J, Boza J, Xaus J (2004) Goat milk is less immunogenic than cow milk in a murine model of atopy. J Pediatr Gastroenterol Nutr 39:354–360CrossRefPubMedGoogle Scholar
  31. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. Royal Society of Chemistry, Cambridge, pp 90–125Google Scholar
  32. Manderson G, Hardman M, Creamer L (1998) Effect of heat treatment on the conformation and aggregation of β-lactoglobulin A, B, and C. J Agric Food Chem 46:5052–5061CrossRefGoogle Scholar
  33. Manderson G, Creamer L, Hardman M (1999) Effect of heat treatment on the circular dichroism spectra of bovine beta-lactoglobulin A, B, and C. J Agric Food Chem 47:4557–4567CrossRefPubMedGoogle Scholar
  34. Mercadante D, Melton L, Norris G, Loo T, Williams M, Dobson R, Jameson G (2011) Bovine β-lactoglobulin is dimeric under imitative physiological conditions: dissociation equilibrium and rate constants over the pH range of 2.5–7.5. Biophys J 103:303–312CrossRefGoogle Scholar
  35. Montilla A, Calvo M (1997) Goat’s milk stability during heat treatment: effect of pH and phosphates. J Agric Food Chem 45:931–934CrossRefGoogle Scholar
  36. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:320–324CrossRefGoogle Scholar
  37. Roefs S, Kruif K (1994) A model for the denaturation and aggregation of β-lactoglobulin. Eur J Biochem 226:883–889CrossRefPubMedGoogle Scholar
  38. Sakurai K, Oobatake M, Goto Y (2001) Salt-dependent monomer–dimer equilibrium of bovine β-lactoglobulin at pH 3. Protein Sci 10:2325–2335CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856CrossRefPubMedGoogle Scholar
  40. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sievers F, Higgins DG (2014) Clustal omega, accurate alignment of very large numbers of sequences. Humana Press, Totowa, NJ, pp 105–116Google Scholar
  42. Smolenski G, Haines S, Kwan F, Bond J, Farr V, Davis S, Stelwagen K, Wheeler T (2007) Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 6:207–215CrossRefPubMedGoogle Scholar
  43. Uhrínová S, Smith MH, Jameson GB, Uhrín D, Sawyer L, Barlow PN (2000) Structural changes accompanying pH-induced dissociation of the beta-lactoglobulin dimer. Biochemistry 39:3565–3574CrossRefPubMedGoogle Scholar
  44. Wang C, Zhu Y, Wang J (2015) Comparative study on the heat stability of goat milk and cow milk. Indian J Anim Res 50:610–613Google Scholar
  45. Zadow JG, Hardham JF, Kocak HR, Mayes JJ (1983) The stability of goat’s milk to UHT processing. Aust J Dairy Technol 1:20–23Google Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
  3. 3.Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical SciencesMassey UniversityAucklandNew Zealand
  4. 4.Food and Bio-Based ProductsAgResearch LimitedHamiltonNew Zealand
  5. 5.MS3 Solutions LtdHamiltonNew Zealand
  6. 6.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
  7. 7.The Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
  8. 8.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleAustralia

Personalised recommendations