On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components

Abstract

Biological membranes are composed of different components and there is no a priori reason to assume that all components are isotropic. It was previously shown that the anisotropic properties of membrane components may explain the stability of membrane tubular protrusions even without the application of external force. Our theoretical study focuses on the role of anisotropic membrane components in the stability of membrane tubular structures generated or stabilized by actin filaments. We show that the growth of the actin cytoskeleton inside the vesicle can induce the partial lateral segregation of different membrane components. The entropy of mixing of membrane components hinders the total lateral segregation of the anisotropic and isotropic membrane components. Self-assembled aggregates formed by anisotropic membrane components facilitate the growth of long membrane tubular protrusions. Protrusive force generated by actin filaments favors strong segregation of membrane components by diminishing the opposing effect of mixing entropy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahmed S, Goh WI, Bu W (2010) I-bar domains, irsp53 and filopodium formation. Sem Cell Dev Biol 21:350–356 (Elsevier)

  2. Ayton GS, Voth GA (2010) Multiscale simulation of protein mediated membrane remodeling. Semin Cell Dev Biol 21:357–362 (Elsevier)

  3. Ayton GS, Lyman E, Krishna V, Swenson RD, Mim C, Unger VM, Voth GA (2009) New insights into bar domain-induced membrane remodeling. Biophys J 97(6):1616–1625

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Baumgart T, Capraro BR, Zhu C, Das SL (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62:483

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bernchou U, Brewer J, Midtiby HS, Ipsen JH, Bagatolli LA, Simonsen AC (2009) Texture of lipid bilayer domains. J Am Chem Soc 131(40):14130–14131

    CAS  Article  PubMed  Google Scholar 

  6. Bobrovska N, Góźdź W, Kralj-Iglič V, Iglič A (2013) On the role of anisotropy of membrane components in formation and stabilization of tubular structures in multicomponent membranes. PloS One 8(9):e73941

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bohinc K, Kralj-Iglič V, May S (2003) Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J Chem Phys 119(14):7435–7444

    CAS  Article  Google Scholar 

  8. Borghi N, Rossier O, Brochard-Wyart F (2003) Hydrodynamic extrusion of tubes from giant vesicles. Europhys Lett 64(6):837

    CAS  Article  Google Scholar 

  9. Boulbitch A (1998) Deflection of a cell membrane under application of a local force. Phys Rev E 57(2):2123

    CAS  Article  Google Scholar 

  10. Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 55(3):509–517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1):61–81

    CAS  Article  PubMed  Google Scholar 

  12. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–76

    CAS  Article  PubMed  Google Scholar 

  13. Cuvelier D, Derényi I, Bassereau P, Nassoy P (2005) Coalescence of membrane tethers: experiments, theory, and applications. Biophys J 88(4):2714–2726

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Davtyan A, Simunovic M, Voth GA (2016) Multiscale simulations of protein-facilitated membrane remodeling. J Struct Biol 196(1):57–63

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Downing KH, Nogales E (1998) Tubulin and microtubule structure. Curr Opin Cell Biol 10(1):16–22

    CAS  Article  PubMed  Google Scholar 

  16. Elbaum M, Fygenson DK, Libchaber A (1996) Buckling microtubules in vesicles. Phys Rev Lett 76(21):4078

    CAS  Article  PubMed  Google Scholar 

  17. Emsellem V, Cardoso O, Tabeling P (1998) Vesicle deformation by microtubules: a phase diagram. Phys Rev E 58(4):4807

    CAS  Article  Google Scholar 

  18. Fischer TM (1992) Bending stiffness of lipid bilayers. II. Spontaneous curvature of the monolayers. J Phys II 2(3):327–336

    CAS  Google Scholar 

  19. Fischer TM (1993) Bending stiffness of lipid bilayers. III. Gaussian curvature. J Phys II 2(3):337–343

    Google Scholar 

  20. Fošnarič M, Iglič A, May S (2006) Influence of rigid inclusions on the bending elasticity of a lipid membrane. Phys Rev E 74(5):051503

    Article  Google Scholar 

  21. Fošnarič M, Iglič A, Slivnik T, Kralj-Iglič V (2008) Flexible membrane inclusions and membrane inclusions induced by rigid globular proteins. Adv Planar Lipid Bilayers Lipos 7:143–168

    Article  Google Scholar 

  22. Fournier J (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76(23):4436

    CAS  Article  PubMed  Google Scholar 

  23. Fournier JB, Galatola P (1998) Bilayer membranes with 2d-nematic order of the surfactant polar heads. Braz J Phys 28(4):329

    CAS  Article  Google Scholar 

  24. Frost A, Unger VM, De Camilli P (2009) The bar domain superfamily: membrane-molding macromolecules. Cell 137(2):191–196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Fygenson DK, Marko JF, Libchaber A (1997) Mechanics of microtubule-based membrane extension. Phys Rev Lett 79(22):4497

    CAS  Article  Google Scholar 

  26. Gómez-Llobregat J, Elías-Wolff F, Lindén M (2016) Anisotropic membrane curvature sensing by amphipathic peptides. Biophys J 110(1):197–204

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gompper G, Kroll DM (2004) Triangulated-surface models of fluctuating membranes. In: Nelson D, Piran T, Weinberg S (eds) Statistical mechanics of membranes and surfaces. 2nd edn World Scientific, Singapore, pp 359–426

  28. Gompper G, Kroll DM (1996) Random surface discretizations and the renormalization of the bending rigidity. J Phys I 6(10):1305–1320

    Google Scholar 

  29. Gov NS, Gopinathan A (2006) Dynamics of membranes driven by actin polymerization. Biophys J 90(2):454–469

    CAS  Article  PubMed  Google Scholar 

  30. Góźdź WT (2004) Spontaneous curvature induced shape transformation of tubular polymersomes. Langmuir 20:7385–7391

    Article  PubMed  Google Scholar 

  31. Góźdź WT (2005) Influence of spontaneous curvature and microtubules on the conformations of lipid vesicles. J Phys Chem B 109:21145–21149

    Article  PubMed  Google Scholar 

  32. Góźdź WT (2006) The interface width of separated two-component lipid membranes. J Phys Chem B 110:21981–21986

    Article  PubMed  Google Scholar 

  33. Góźdź WT, Bobrovska N, Ciach A (2012) Separation of components in lipid membranes induced by shape transformation. J Chem Phys 137(1):015101

    Article  PubMed  Google Scholar 

  34. Häckl W, Bärmann M, Sackmann E (1998) Shape changes of self-assembled actin bilayer composite membranes. Phys Rev Lett 80:1786–1789

    Article  Google Scholar 

  35. Hägerstrand H, Mrowczynska L, Salzer U, Prohaska R, Michelsen KA, Kralj-Iglič V, Iglič A (2006) Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol Membr Biol 23(3):277–288

    Article  PubMed  Google Scholar 

  36. Heinrich V, Božič B, Svetina S, Žekš B (1999) Vesicle deformation by an axial load: from elongated shapes to tethered vesicles. Biophys J 76(4):2056–2071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Heinrich V, Waugh RE (1996) A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Ann Biomed Eng 24(5):595–605

    CAS  Article  PubMed  Google Scholar 

  38. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28:693–703

    CAS  Google Scholar 

  39. Helfrich W, Prost J (1988) Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys Rev A 38(6):3065

    CAS  Article  Google Scholar 

  40. Hill TL (1986) An introduction to statistical thermodynamics. Dover Press

  41. Iglič A, Kralj-Iglič V, Majhenc J (1999) Cylindrical shapes of closed lipid bilayer structures correspond to an extreme area difference between the two monolayers of the bilayer. J Biomech 32(12):1343–1347

    Article  PubMed  Google Scholar 

  42. Iglič A, Veranič P, Batista U, Kralj-Iglič V (2001) Theoretical analysis of shape transformation of v-79 cells after treatment with cytochalasin b. J Biomech 34(6):765–772

    Article  PubMed  Google Scholar 

  43. Iglič A, Babnik B, Gimsa U, Kralj-Iglič V (2005) On the role of membrane anisotropy in the beading transition of undulated tubular membrane structures. J Phys A-Math Gen 38(40):8527

    Article  Google Scholar 

  44. Iglič A, Hägerstrand H, Veranič P, Plemenitaš A, Kralj-Iglič V (2006) Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions. J Theor Biol 240(3):368–373

    Article  PubMed  Google Scholar 

  45. Iglič A, Babnik B, Bohinc K, Fošnarič M, Hägerstrand H, Kralj-Iglič V (2007) On the role of anisotropy of membrane constituents in formation of a membrane neck during budding of a multicomponent membrane. J Biomech 40(3):579–585

    Article  PubMed  Google Scholar 

  46. Iglič A, Lokar M, Babnik B, Slivnik T, Veranič P, Hägerstrand H, Kralj-Iglič V (2007) Possible role of flexible red blood cell membrane nanodomains in the. Blood Cell Mol Dis 39(1):14–23

    Article  Google Scholar 

  47. Iglič A, Kralj-Iglič V, Drobne D (2015) Nanostructures in Biological Systems: theory and applications. Pan Stanford Publishing Pte. Ltd

  48. Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, Pantaloni D, Carlier MF (1995) Flexibility of actin filaments derived from thermal fluctuations. effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270(19):11437–11444

    CAS  Article  PubMed  Google Scholar 

  49. Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic Press

  50. Jelerčič U, Gov NS (2015) Pearling instability of membrane tubes driven by curved proteins and actin polymerization. Phys Biol 12(6):066022

    Article  PubMed  Google Scholar 

  51. Jesenek D, Perutková S, Góźdź W, Kralj-Iglič V, Iglič A, Kralj S (2013) Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering. Int J Nanomed 8:677–687

    Article  Google Scholar 

  52. Kabaso D, Bobrovska N, Góźdź W, Gov N, Kralj-Iglič V, Veranič P, Iglič A (2012) On the role of membrane anisotropy and bar proteins in the stability of tubular membrane structures. J Biomech 45(2):231–238

    Article  PubMed  Google Scholar 

  53. Kabaso D, Bobrovska N, Góźdź W, Gongadze E, Kralj-Iglič V, Zorec R, Iglič A (2012) The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 87:204–210

    CAS  Article  PubMed  Google Scholar 

  54. Kralj-Iglič V, Svetina S, Žekš B (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur Biophys J 24(5):311–321

    Article  PubMed  Google Scholar 

  55. Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10:5–8

    Article  Google Scholar 

  56. Kralj-Iglič V, Iglič A, Hägerstrand H, Peterlin P (2000) Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys Rev E 61:4230–4234

    Article  Google Scholar 

  57. Kralj-Iglič V, Iglič A, Gomišček G, Sevšek F, Arrigler V, Hägerstrand H (2002) Microtubes and nanotubes of a phospholipid bilayer membrane. J Phys A-Math Gen 35(7):1533–1549

    Article  Google Scholar 

  58. Kralj-Iglič V, Remškar M, Vidmar G, Fošnarič M, Iglič A (2002) Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes. Phys Lett A 296(2):151–155

    Article  Google Scholar 

  59. Kralj-Iglič V, Hägerstrand H, Veranič P, Jezernik K, Babnik B, Gauger DR, Iglič A (2005) Amphiphile-induced tubular budding. Eur Biophys J 34(8):1066–1070

    Article  PubMed  Google Scholar 

  60. Kralj-Iglič V, Babnik B, Gauger D, May S, Iglič A (2006) Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J Stat Phys 125(3):727–752

    Article  Google Scholar 

  61. Kralj-Iglic V (2012) Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomed 7:3579–3596

    CAS  Article  Google Scholar 

  62. Kulkarni CV (2012) Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale 4(19):5779–5791

    CAS  Article  PubMed  Google Scholar 

  63. Liu AP, Richmond DL, Maibaum L, Pronk S, Geissler PL, Fletcher DA (2008) Membrane-induced bundling of actin filaments. Nat Phys 4(10):789–793

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Lubensky T, Prost J (1992) Orientational order and vesicle shape. J Phys II 2(3):371–382

    CAS  Google Scholar 

  65. MacKintosh FC, Lubensky TC (1991) Orientational order, topology, and vesicle shapes. Phys Rev Lett 67:1169–1172

    CAS  Article  PubMed  Google Scholar 

  66. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590

    CAS  Article  PubMed  Google Scholar 

  67. Mesarec L, Góźdź W, Kralj Iglič V, Kralj S, Iglič A (2016) Closed membrane shapes with attached bar domains subject to external force of actin filaments. Colloid Surface B 141:132–140

    CAS  Article  Google Scholar 

  68. Miyata H, Nishiyama S, Akashi KI, Kinosita K (1999) Protrusive growth from giant liposomes driven by actin polymerization. P Natl Acad Sci USA 96(5):2048–2053

  69. Noguchi H (2016) Membrane tubule formation by banana-shaped proteins with or without transient network structure. Scientific Reports 6

  70. Penič S, Iglič A, Bivas I, Fošnarič M (2015) Bending elasticity of vesicle membranes studied by Monte Carlo simulations of vesicle thermal shape fluctuations. Soft Matter 11(25):5004–5009

    Article  PubMed  Google Scholar 

  71. Perutková Š, Daniel M, Dolinar G, Rappolt M, Kralj-Iglič V, Iglič A (2009) Stability of the inverted hexagonal phase. Adv Planar Lipid Bilayers Liposomes 9:237–278

    Article  Google Scholar 

  72. Perutková Š, Kralj-Iglič V, Frank M, Iglič A (2010) Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins. J Biomech 43(8):1612–1617

    Article  PubMed  Google Scholar 

  73. Perutková Š, Daniel M, Rappolt M, Pabst G, Dolinar G, Kralj-Iglič V, Iglič A (2011) Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations. Phys Chem Chem Phys 13(8):3100–3107

    Article  PubMed  Google Scholar 

  74. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) Bar domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495

    CAS  Article  PubMed  Google Scholar 

  75. Ramakrishnan N, Kumar PS, Ipsen JH (2010) Monte Carlo simulations of fluid vesicles with in-plane orientational ordering. Phys Rev E 81(4):041922

    CAS  Article  Google Scholar 

  76. Ramakrishnan N, Kumar PBS, Ipsen JH (2011) Modeling anisotropic elasticity of fluid membranes. Macromol Theor Simul 20(7):446–450

    CAS  Article  Google Scholar 

  77. Ramakrishnan N, Ipsen JH, Kumar PS (2012) Role of disclinations in determining the morphology of deformable fluid interfaces. Soft Matter 8(11):3058–3061

    CAS  Article  Google Scholar 

  78. Ramakrishnan N, Kumar PS, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104(5):1018–1028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Rappolt M, Hodzic A, Sartori B, Ollivon M, Laggner P (2008) Conformational and hydrational properties during the-to-and-to hii-phase transition in phosphatidylethanolamine. Chem Phys Lipids 154(1):46–55

    CAS  Article  PubMed  Google Scholar 

  80. Saarikangas J, Zhao H, Pykäläinen A, Laurinmäki P, Mattila PK, Kinnunen PK, Butcher SJ, Lappalainen P (2009) Molecular mechanisms of membrane deformation by i-bar domain proteins. Curr Biol 19(2):95

    CAS  Article  PubMed  Google Scholar 

  81. Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) Irsp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18(2):52–60

    CAS  Article  PubMed  Google Scholar 

  82. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137

    CAS  Article  Google Scholar 

  83. Shlomovitz R, Gov NS (2008) Physical model of contractile ring initiation in dividing cells. Biophys J 94(4):1155–1168

    CAS  Article  PubMed  Google Scholar 

  84. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harbor Perspect Biol 3(10):a004,697

  85. Simunovic M, Voth GA, Callan-Jones A, Bassereau P (2015) When physics takes over: Bar proteins and membrane curvature. Trends Cell Biol 25(12):780–792

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720

    CAS  Article  PubMed  Google Scholar 

  87. Smith G, Sirota E, Safinya C, Clark NA (1988) Structure of the l \(\beta\) phases in a hydrated phosphatidylcholine multimembrane. Phys Rev Lett 60(9):813

    CAS  Article  PubMed  Google Scholar 

  88. Suetsugu S (2010) The proposed functions of membrane curvatures mediated by the bar domain superfamily proteins. J Biochem 148(1):1–12

    CAS  Article  PubMed  Google Scholar 

  89. Templer RH (1998) Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr Opin Colloid Interface Sci 3(3):255–263

    CAS  Article  Google Scholar 

  90. Umeda T, Nakajima H, Hotani H (1998) Theoretical analysis of shape transformations of liposomes caused by microtubule assembly. J Phys Soc Jpn 67(2):682–688

    CAS  Article  Google Scholar 

  91. Veksler A, Gov NS (2007) Phase transitions of the coupled membrane-cytoskeleton modify cellular shape. Biophys J 93(11):3798–3810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Venier P, Maggs AC, Carlier MF, Pantaloni D (1994) Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J Biol Chem 269(18):13353–13360

    CAS  PubMed  Google Scholar 

  93. Wade RH, Hyman AA (1997) Microtubule structure and dynamics. Curr Opin Cell Biol 9(1):12–17

    CAS  Article  PubMed  Google Scholar 

  94. Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curvatures in lipid membranes. Phys Rev E 89(6):062715

    Article  Google Scholar 

  95. Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PloS One 4(5):e5678

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    CAS  Article  PubMed  Google Scholar 

  97. Zimmerberg J, McLaughlin S (2004) Membrane curvature: how bar domains bend bilayers. Curr Biol 14(6):R250–R252

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luka Mesarec.

Additional information

Special Issue: Regional Biophysics Conference 2016.

We would like to acknowledge the support from National Science Center Grant 2015/19/B/ST3/03122 and the Grants of the Slovenian Research Agency (ARRS) No. P-0232, J5-7098 and P3-0388. Prof. Nir Gov is gratefully acknowledged for help and fruitful discussions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mesarec, L., Góźdź, W., Kralj, S. et al. On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components. Eur Biophys J 46, 705–718 (2017). https://doi.org/10.1007/s00249-017-1212-z

Download citation

Keywords

  • Numerical study
  • Biological membranes
  • Vesicles
  • Anisotropic membrane components
  • Membrane tubular protrusions
  • Actin cytoskeleton