Skip to main content
Log in

Characterization of microtubule buckling in living cells

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3–2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–726

    Article  CAS  PubMed  Google Scholar 

  • Bicek AD, Tüzel E, Kroll DM, Odde DJ (2007) Analysis of microtubule curvature. Methods Cell Biol 83:237–268

    Article  CAS  PubMed  Google Scholar 

  • Bicek AD, Tuzel E, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, Odde DJ (2009) Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol Biol Cell 20(12):2943–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, Mahadevan L, Parker KK, Ingber DE, Weitz DA (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173(5):733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brangwynne CP, MacKintosh FC, Weitz DA (2007) Force fluctuations and polymerization dynamics of intracellular microtubules. Proc Natl Acad Sci USA 104(41):16128–16133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brangwynne CP, Koenderink GH, Mackintosh FC, Weitz DA (2008) Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys Rev Lett 100(11):118104

    Article  PubMed  Google Scholar 

  • Charlebois BD, Schek HT 3rd, Hunt AJ (2010) Nanometer-resolution microtubule polymerization assays using optical tweezers and microfabricated barriers. Methods Cell Biol 95:207–219

    Article  CAS  PubMed  Google Scholar 

  • Chernick MR (2007) Bootstrap methods: a guide for practitioners and researchers, 2nd edn

  • Dogterom M, Yurke B (1997) Measurement of the force–velocity relation for growing microtubules. Science 278(5339):856–860

    Article  CAS  PubMed  Google Scholar 

  • Felgner H, Frank R, Schliwa M (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J Cell Sci 109(Pt 2):509–516

    CAS  PubMed  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardel ML, Kasza KE, Brangwynne CP, Liu J, Weitz DA (2008) Mechanical response of cytoskeletal networks. Methods Cell Biol 89:487–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauger E, Stark H (2006) Numerical study of a microscopic artificial swimmer. Phys Rev E Stat Nonlinear Soft Matter Phys 74(2 Pt 1):021907

    Article  Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120(4):923–934

    Article  CAS  PubMed  Google Scholar 

  • Gittes F, Meyhofer E, Baek S, Howard J (1996) Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys J 70(1):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross SP, Tuma MC, Deacon SW, Serpinskaya AS, Reilein AR, Gelfand VI (2002) Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 156(5):855–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendricks AG, Holzbaur EL, Goldman YE (2012) Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc Natl Acad Sci USA 109(45):18447–18452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc, Sunderland

  • Howard J (2006) Elastic and damping forces generated by confined arrays of dynamic microtubules. Phys Biol 3(1):54–66

    Article  CAS  PubMed  Google Scholar 

  • Howard J (2009) Mechanical signaling in networks of motor and cytoskeletal proteins. Annu Rev Biophys 38:217–234

    Article  CAS  PubMed  Google Scholar 

  • Jin MZ, Ru CQ (2013) Localized buckling of a microtubule surrounded by randomly distributed cross linkers. Phys Rev E 88:012701

  • Kabir AMR, Inoue D, Afrin T, Mayama H, Sada K, Kakugo A (2015) Buckling of microtubules on a 2D elastic medium. Sci Rep 5:17222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent IA, Rane PS, Dickinson RB, Ladd AJ, Lele TP (2016) Transient pinning and pulling: a mechanism for bending microtubules. PLoS One 11(3):e0151322

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura A, Onami S (2005) Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration. Dev Cell 8(5):765–775

    Article  CAS  PubMed  Google Scholar 

  • Kulic IM, Brown AE, Kim H, Kural C, Blehm B, Selvin PR, Nelson PC, Gelfand VI (2008) The role of microtubule movement in bidirectional organelle transport. Proc Natl Acad Sci USA 105(29):10011–10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidel C, Longoria RA, Gutierrez FM, Schubeita GT (2012) Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 103(3):492–500

  • Levi V, Serpinskaya AS, Gratton E, Gelfand V (2006) Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophys J 90(1):318–327

    Article  CAS  PubMed  Google Scholar 

  • Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652

    Article  CAS  PubMed  Google Scholar 

  • Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130(4):909–917

    Article  CAS  PubMed  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):28

    Article  Google Scholar 

  • Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313(5789):944–948

    Article  CAS  PubMed  Google Scholar 

  • Olesen OF, Kawabata-Fukui H, Yoshizato K, Noro N (2002) Molecular cloning of XTP, a tau-like microtubule-associated protein from Xenopus laevis tadpoles. Gene 283(1–2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Pallavicini C, Levi V, Wetzler DE, Angiolini JF, Benseñor L, Desposito MA, Bruno L (2014) Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells. Biophys J 106(12):2625–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paluch EK, Nelson CM, Biais N, Fabry B, Moeller J, Pruitt BL, Kudryasheva G, Rehfeldt F, Federle W (2015) Mechanotransduction: use the force(s). BMC Biol 13:47. doi:10.1186/s12915-015-0150-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I, Martiel JL, Vantard M (2013) MAP65/Ase1 promote microtubule flexibility. Mol Biol Cell 24(12):1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauch P, Heine P, Goettgens B, Käs JA (2013) Forces from the rear: deformed microtubules in neuronal growth cones influence retrograde flow and advancement. New J Phys 15:015007

    Article  Google Scholar 

  • Robert A, Herrmann H, Davidson MW, Gelfand VI (2014) Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. FASEB J 28(7):2879–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SL, Tint IS, Fanapour PC, Gelfand VI (1997) Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc Natl Acad Sci USA 94(8):3720–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2(10):718–723

    Article  CAS  PubMed  Google Scholar 

  • Shekhar N, Neelam S, Wu J, Ladd AJ, Dickinson RB, Lele TP (2013) Fluctuating motor forces bend growing microtubules. Cell Mol Bioeng 6(2):120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R (2009) Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci USA 106(46):19381–19386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Misra G, Russell RJ, Ladd AJ, Lele TP, Dickinson RB (2011) Effects of dynein on microtubule mechanics and centrosome positioning. Mol Biol Cell 22(24):4834–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78(4):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Cerda for fruitful discussions. We acknowledge support from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-0899) and Universidad de Buenos Aires (UBACyT 20020110100074, 20020120200244), Argentina. We also thank Dr. Vladimir I. Gelfand (Northwestern University, Chicago, IL) for providing the cell line used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Bruno.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallavicini, C., Monastra, A., Bardeci, N.G. et al. Characterization of microtubule buckling in living cells. Eur Biophys J 46, 581–594 (2017). https://doi.org/10.1007/s00249-017-1207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1207-9

Keywords

Navigation