European Biophysics Journal

, Volume 46, Issue 6, pp 567–580 | Cite as

Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure

Original Article

Abstract

Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

Keywords

nsPEF Elasticity Elastic modulus AFM Actin cytoskeleton Anchorage-independent growth 

References

  1. Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2012) Lehrbuch der molekularen zellbiologie, vol 4, vollständig überarbeitete auflage. Wiley-VCH, WeinheimGoogle Scholar
  2. Anderson PA, Muller-Borer BJ, Esch GL, Coleman WB, Grisham JW, Malouf NN (2007) Calcium signals induce liver stem cells to acquire a cardiac phenotype. Cell Cycle 6:1565–1569CrossRefPubMedGoogle Scholar
  3. Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796CrossRefPubMedGoogle Scholar
  4. Beebe SJ, Schoenbach KH, Heller R (2010) Bioelectric applications for treatment of melanoma. Cancers 2:1731–1770CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beebe SJ, Chen X, Liu J, Schoenbach KH (2011) Nanosecond pulsed electric field ablation of hepatocellular carcinoma Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, pp 6861–6865Google Scholar
  6. Ben-Ze’ev A (1985) The cytoskeleton in cancer cells. BBA Rev Cancer 780:197–212Google Scholar
  7. Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–123CrossRefPubMedGoogle Scholar
  8. Buehler MJ (2013) Mechanical players—the role of intermediate filaments in cell mechanics and organization. Biophys J 105:1733–1734CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caille N, Thoumine O, Tardy Y, Meister J-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187CrossRefPubMedGoogle Scholar
  10. Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ (2010) Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment cell melanoma Res 23:554–563CrossRefPubMedGoogle Scholar
  11. Chen X, Zhuang J, Kolb JF, Schoenbach KH, Beebe SJ (2012) Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields. Technol Cancer Res Treat 11:83–93CrossRefPubMedGoogle Scholar
  12. Chopinet L, Roduit C, Rols MP, Dague E (2013) Destabilization induced by electropermeabilization analyzed by atomic force microscopy. BBA Biomembr 1828:2223–2229CrossRefGoogle Scholar
  13. Chopinet L, Dague E, Rols MP (2014) AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization. Cytoskeleton 71:587–594CrossRefGoogle Scholar
  14. Cross SE, Jin Y-S, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783CrossRefPubMedGoogle Scholar
  15. Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19:384003CrossRefPubMedGoogle Scholar
  16. De Feijter AW, Ray JS, Weghorst CM, Klaunig JE, Goodman JI, Chang CC, Ruch RJ, Trosko JE (1990) Infection of rat liver epithelial cells with v-Ha-ras: correlation between oncogene expression, gap junctional communication, and tumorigenicity. Mol Carcinog 3:54–67CrossRefPubMedGoogle Scholar
  17. Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y (2009) Bone morphogenetic protein-4 induced Rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 220:72–81CrossRefPubMedGoogle Scholar
  18. Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269:781–786CrossRefPubMedGoogle Scholar
  19. Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258CrossRefPubMedGoogle Scholar
  20. Hayashi T, Nomata K, Chang C-C, Ruch RJ, Trosko JE (1998) Cooperative effects of v-myc and c-Ha-ras oncogenes on gap junctional intercellular communication and tumorigenicity in rat liver epithelial cells. Cancer Lett 128:145–154CrossRefPubMedGoogle Scholar
  21. Jonas O, Mierke CT, Kas JA (2011) Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter 7:11488–11495CrossRefGoogle Scholar
  22. JPK Instruments AG a. QI™ mode - Quantitative Imaging with the NanoWizard 3 AFM. Technichal Note (jpk-tech-quantitative-imaging.14-1.pdf at www.jpk.com). Accessed 23 Mar 2017
  23. JPK Instruments AG b. Investigation of living cells using JPK’s QI™ mode. Application Note (jpk-app-living-cells-qi.14-1.pdf at www.jpk.com. Accessed 23 Mar 2017
  24. Kolb JF, Stacey M (2012) Subcellular biological effects of nanosecond pulsed electric fields Plasma for Bio-Decontamination, Medicine and Food Security. Springer, Heidelb erg, pp 361–379CrossRefGoogle Scholar
  25. Lee KW, Kim MS, Kang NJ, Kim DH, Surh YJ, Lee HJ, Moon A (2006) H-ras selectively up-regulates MMP-9 and COX-2 through activation of ERK1/2 and NF-κB: an implication for invasive phenotype in rat liver epithelial cells. Int J Cancer 119:1767–1775CrossRefPubMedGoogle Scholar
  26. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J Biophys Lett 28:312–316CrossRefGoogle Scholar
  27. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333CrossRefPubMedGoogle Scholar
  28. Neumann T (2008) Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments, Berlin, GermanyGoogle Scholar
  29. Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127:1727–1736CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nuccitelli R, Tran K, Athos B, Kreis M, Nuccitelli P, Chang KS, Epstein EH, Tang JY (2012) Nanoelectroablation therapy for murine basal cell carcinoma. Biochem Biophys Res Commun 424:446–450CrossRefPubMedPubMedCentralGoogle Scholar
  31. Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metas 26:273–287CrossRefGoogle Scholar
  32. Pakhomov AG, Xiao S, Pakhomova ON, Semenov I, Kuipers MA, Ibey BL (2014) Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling. Bioelectrochemistry 100:88–95CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rao KMK, Cohen HJ (1991) Actin cytoskeletal network in aging and cancer. Mutat Res DNAging 256:139–148CrossRefGoogle Scholar
  34. Roduit C, van der Goot FG, De Los Rios P, Yersin A, Steiner P, Dietler G, Catsicas S, Lafont F, Kasas S (2008) Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophys J 94:1521–1532CrossRefPubMedGoogle Scholar
  35. Rother J, Nöding H, Mey I, Janshoff A (2014) Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biology 4:140046CrossRefPubMedPubMedCentralGoogle Scholar
  36. Stacey M, Fox P, Buescher S, Kolb J (2011) Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82:131–134CrossRefPubMedGoogle Scholar
  37. Stamov DR, Kaemmer SB, Hermsdörfer A, Barner J, Jähnke T, Haschke H (2015) BioScience AFM—Capturing dynamics from single molecules to living cells. Microscopy Today 23:18–25CrossRefGoogle Scholar
  38. Steuer A, Schmidt A, Labohá P, Babica P, Kolb JF (2016) Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry 112:33–46CrossRefPubMedGoogle Scholar
  39. Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Can Res 71:5075–5080CrossRefGoogle Scholar
  40. Thompson GL, Roth C, Tolstykh G, Kuipers M, Ibey BL (2014) Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 35:262–272CrossRefPubMedGoogle Scholar
  41. Tsao M-S, Smith JD, Nelson KG, Grisham JW (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’cells. Exp Cell Res 154:38–52CrossRefPubMedGoogle Scholar
  42. Wu S, Wang Y, Guo J, Chen Q, Zhang J, Fang J (2014) Nanosecond pulsed electric fields as a novel drug free therapy for breast cancer: an in vivo study. Cancer Lett 343:268–274CrossRefPubMedGoogle Scholar
  43. Xu WW, Mezencev R, Kim B, Wang LJ, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7:e46609CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yamasaki H (1991) Aberrant expression and function of gap junctions during carcinogenesis. Environ Health Perspect 93:191CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yousafzai MS, Coceano G, Mariutti A, Ndoye F, Amin L, Niemela J, Bonin S, Scoles G, Cojoc D (2016) Effect of neighboring cells on cell stiffness measured by optical tweezers indentation. J Biomed Opt 21:057004CrossRefGoogle Scholar
  46. Zhou J, Zhao L, Qin L, Wang J, Jia Y, Yao H, Sang C, Hu Q, Shi S, Nan X (2010) Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells. PLoS One 5:e9732CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2017

Authors and Affiliations

  1. 1.Leibniz Institute for Plasma Science and TechnologyGreifswaldGermany
  2. 2.Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX)Masaryk UniversityBrnoCzech Republic

Personalised recommendations