Skip to main content

Investigation of the binding mode of 1, 3, 4-oxadiazole derivatives as amide-based inhibitors for soluble epoxide hydrolase (sEH) by molecular docking and MM-GBSA

Abstract

The soluble epoxide hydrolase (sEH) enzyme plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. Inhibition of sEH provides a new approach to the treatment of inflammation, hypertension and atherosclerosis. In this study, the binding modes and inhibition mechanisms of the new oxadiazole-based amide inhibitors of the human soluble epoxide hydrolase were investigated by molecular docking and molecular dynamics (MD) simulation followed by the MM-GBSA method to calculate the binding free energy of each inhibitor to sEH. The results obtained from the binding free energy (ΔG binding) calculation and normal mode analysis indicate that the major favorable contributors are the van der Waals and electrostatic terms, whereas the polar solvation term opposes binding. In addition, a good agreement between the calculated ΔG binding and the experimental IC50 was obtained [correlation coefficient, r 2 = 0.89 (with) and 0.87 (without) entropy]. Besides, comparison of the enthalpy changes (ΔG MM-GBSA) with entropy changes (–TΔS) indicates that binding process of all inhibitors to sEH is enthalpy-driven. Based on the ΔG binding on per residue decomposition, Asp335 and Tyr383 residues from the active site and Trp336, Leu499 and His524 residues from hydrophobic pockets contribute the most to ΔG binding. Moreover, hydrogen bond analysis reveals that Tyr383, Tyr466 and Asp335 residues have an important role in the binding to inhibitors by forming hydrogen bonds with high occupancies. Our obtained results are useful for the understanding of the sEH-inhibitor interactions and may have great importance in the design of future sEH inhibitors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anandan SK, Gless RD (2010) Exploration of secondary and tertiary pharmacophores in unsymmetrical N, N’-diaryl urea inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett 20:2740–2744. doi:10.1016/j.bmcl.2010.03.074

    CAS  Article  PubMed  Google Scholar 

  2. Anandan SK, Do ZN, Webb HK, Patel DV, Gless RD (2009) Non-urea functionality as the primary pharmacophore in soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 19:1066–1070. doi:10.1016/j.bmcl.2009.01.013

    CAS  Article  PubMed  Google Scholar 

  3. Åqvist J, Medina C, Samuelsson J-E (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7:385–391. doi:10.1093/protein/7.3.385

    Article  PubMed  Google Scholar 

  4. Arand M, Cronin A, Adamska M, Oesch F (2005) Epoxide hydrolases: structure, function, mechanism, and assay. Method Enzymol 400:569–588. doi:10.1016/s0076-6879(05)00032-7

    CAS  Article  Google Scholar 

  5. Argiriadi MA, Morisseau C, Hammock BD, Christianson DW (1999) Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. P Natl Acad Sci USA 96:10637–10642. doi:10.1073/pnas.96.19.10637

    CAS  Article  Google Scholar 

  6. Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: applications to chemical and biomolecular systems. Ann Rev Biophys Bio 8:431–492. doi:10.1146/annurev.bb.18.060189.002243

    Article  Google Scholar 

  7. Borhan B, Jones AD, Pinot F, Grant DF, Kurth MJ, Hammock BD (1995) mechanism of soluble epoxide hydrolase: formation of an -hydroxy ester–enzyme intermediate through ASP-333. J Biol Chem 270:26923–26930. doi:10.1074/jbc.270.45.26923

    CAS  Article  PubMed  Google Scholar 

  8. Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558. doi:10.1107/s0021889883010985

    CAS  Article  Google Scholar 

  9. Cronin A, Homburg S, Durk H, Richter I, Adamska M, Frere F, Arand M (2008) Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis. J Mol Biol 383:627–640. doi:10.1016/j.jmb.2008.08.049

    CAS  Article  PubMed  Google Scholar 

  10. Davis BB, Thompson DA, Howard LL, Morisseau C, Hammock BD, Weiss RH (2002) Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. P Natl Acad Sci USA 99:2222–2227. doi:10.1073/pnas.261710799

    CAS  Article  Google Scholar 

  11. Dietze EC, Kuwano E, Casas J, Hammock BD (1991) Inhibition of cytosolic epoxide hydrolase by trans-3-phenylglycidols. Biochem Pharmacol 42:1163–1175. doi:10.1016/0006-2952(91)90250-9

    CAS  Article  PubMed  Google Scholar 

  12. Duan Y, Wu C, Chowdhury S et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. doi:10.1002/jcc.10349

    CAS  Article  PubMed  Google Scholar 

  13. Eldrup AB, Soleymanzadeh F, Taylor SJ et al (2009) Structure-based optimization of arylamides as inhibitors of soluble epoxide hydrolase. J Med Chem 52:5880–5895. doi:10.1021/jm9005302

    CAS  Article  PubMed  Google Scholar 

  14. Eldrup AB, Soleymanzadeh F, Farrow NA, Kukulka A, De Lombaert S (2010) Optimization of piperidyl-ureas as inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett 20:571–575. doi:10.1016/j.bmcl.2009.11.091

    CAS  Article  PubMed  Google Scholar 

  15. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. doi:10.1063/1.470117

    CAS  Article  Google Scholar 

  16. Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem-Biol Interact 129:41–59. doi:10.1016/s0009-2797(00)00197-6

    CAS  Article  PubMed  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian03, revision C.02. Gaussian Inc., Wallingford CT

  18. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    CAS  Article  Google Scholar 

  19. Gomez GA, Moriseau C, Hammock BD, Christianson DW (2006) Human soluble epoxide Hydrolase: structural basis of inhibition by 4-(3-cyclohexylureido)-carboxylic acids. Protein Sci 15:58–64. doi:10.1110/ps.051720206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods: I. the accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. doi:10.1021/ci1000275a

    CAS  Article  PubMed  Google Scholar 

  21. Huang SX, Cao B, Morisseau C, Jin Y, Hammock BD, Long YQ (2012) Structure-based optimization of the piperazino-containing 1,3-disubstituted ureas affording sub-nanomolar inhibitors of soluble epoxide hydrolase. Med Chem Comm 3:379–384. doi:10.1039/C2MD00288D

    CAS  Article  Google Scholar 

  22. Imig JD, Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov 8:794–805. doi:10.1038/nrd2875

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD (2002) Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39:690–694. doi:10.1161/hy0202.103788

    CAS  Article  PubMed  Google Scholar 

  24. Imig JD, Carpenter MA, Shaw S (2009) The soluble epoxide hydrolase inhibitor AR9281 decreases blood pressure, ameliorates renal injury and improves vascular function in hypertension. Pharmaceuticals 2:217–227. doi:10.3390/ph2030217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Ingraham RH, Gless RD, Lo HY (2011) Soluble epoxide hydrolase inhibitors and their potential for treatment of multiple pathologic conditions. Curr Med Chem 18:587–603. doi:10.2174/092986711794480212

    CAS  Article  PubMed  Google Scholar 

  26. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641. doi:10.1002/jcc.10128

    CAS  Article  PubMed  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. doi:10.1063/1.445869

    CAS  Article  Google Scholar 

  28. Karplus M, MacCammon JA (2002) Molecular dynamis simulations of biomolecules. Nat Struct Biol 9:646–652. doi:10.1038/nsb0902-646

    CAS  Article  PubMed  Google Scholar 

  29. Kim IH, Heirtzler FR, Morisseau C, Nishi K, Tsai HJ, Hammock BD (2005) Optimization of amide-based inhibitors of soluble epoxide hydrolase with improved water solubility. J Med Chem 48:3621–3629. doi:10.1021/jm0500929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kim IH, Nishi K, Tsai HJ et al (2007) Design of bioavailable derivatives of 12-(3-adamantan-1-yl-ureido)dodecanoic acid, a potent inhibitor of the soluble epoxide hydrolase. Bioorg Med Chem 15:312–323. doi:10.1016/j.bmc.2006.09.057

    CAS  Article  PubMed  Google Scholar 

  31. Kim IH, Park YK, Hammock BD, Nishi K (2011) Structure-activity relationships of cycloalkylamide derivatives as inhibitors of the soluble epoxide hydrolase. J Med Chem 54:1752–1761. doi:10.1021/jm101431v

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kim IH, Nishi K, Kasagami T, Morisseau C, Liu JY, Tsai HJ, Hammock BD (2012) Biologically active ester derivatives as potent inhibitors of the soluble epoxide hydrolase. Bioorg Med Chem Lett 22:5889–5892. doi:10.1016/j.bmcl.2012.07.074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313. doi:10.1063/1.1749657

    CAS  Article  Google Scholar 

  34. Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417. doi:10.1021/cr00023a004

    CAS  Article  Google Scholar 

  35. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem Res 33:889–897. doi:10.1021/ar000033j

    CAS  Article  Google Scholar 

  36. Krepl M, Clery A, Blatter M, Allain FHT, Sponer J (2016) Synergy between NMR measurments and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. doi:10.1093/nar/gkw438

    PubMed  PubMed Central  Google Scholar 

  37. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov 18:113–135. doi:10.1023/a:1008763014207

    CAS  Article  Google Scholar 

  38. Miller BR, McGee TD Jr, Swaile JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculation. J Chem Theory Comput 8:3314–3321. doi:10.1021/dt300418h

    CAS  Article  PubMed  Google Scholar 

  39. Miyamoto T, Silva M, Hammock BD (1987) Inhibition of epoxide hydrolases and glutathione S-transferases by 2-, 3-, and 4-substituted derivatives of 4′-phenylchalcone and its oxide. Arch Biochem Biophys 254:203–213. doi:10.1016/0003-9861(87)90096-8

    CAS  Article  PubMed  Google Scholar 

  40. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44:1–51. doi:10.1016/j.plipres.2004.10.001

    CAS  Article  PubMed  Google Scholar 

  42. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model Suitable for macromolecules. J Phys Chem B 104:3712–3720. doi:10.1021/jp994072s

    CAS  Article  Google Scholar 

  43. Pearlman DA, Case DA, Caldwell JW et al (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41. doi:10.1016/0010-4655(95)00041-d

    CAS  Article  Google Scholar 

  44. Pecic S, Deng SX, Morisseau C, Hammock BD, Landry DW (2012) Design, synthesis and evaluation of non-urea inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett 22:601–605. doi:10.1016/j.bmcl.2011.10.074

    CAS  Article  PubMed  Google Scholar 

  45. Pecic S, Pakhomova S, Newcomer ME et al (2013) Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 23:417–421. doi:10.1016/j.bmcl.2012.11.084

    CAS  Article  PubMed  Google Scholar 

  46. Qiu H, Li N, Liu JY, Harris TR, Hammock BD, Chiamvimonvat N (2011) Soluble epoxide hydrolase inhibitors and heart failure. Cardiovas Ther 29:99–111. doi:10.1111/j.1755-5922.2010.00150.x

    CAS  Article  Google Scholar 

  47. Rose TE, Morisseau C, Liu JY, Inceoglu B, Jones PD, Sanborn JR, Hammock BD (2010) 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. J Med Chem 53:7067–7075. doi:10.1021/jm100691c

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5

    CAS  Article  Google Scholar 

  49. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 630 X-ray structures. J Chem Inf Comp Sci 34:1000–1008. doi:10.1021/ci00020a039

    CAS  Article  Google Scholar 

  50. Schiøtt B, Bruice TC (2002) Reaction mechanism of soluble epoxide hydrolase: insights from molecular dynamics simulations. J Am Chem Soc 124:14558–14570. doi:10.1021/ja021021r

    Article  PubMed  Google Scholar 

  51. Shen HC (2010) Soluble epoxide hydrolase inhibitors: a patent review. Expert Opin Ther Pat 20:941–956. doi:10.1517/13543776.2010.484804

    CAS  Article  PubMed  Google Scholar 

  52. Shen HC, Ding FX, Wang S et al (2009) Discovery of spirocyclic secondary amine-derived tertiary ureas as highly potent, selective and bioavailable soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 19:3398–3404. doi:10.1016/j.bmcl.2009.05.036

    CAS  Article  PubMed  Google Scholar 

  53. Tanaka D, Tsuda Y, Shiyama T et al (2011) A practical use of ligand efficiency indices out of the fragment-based approach: ligand efficiency-guided lead identification of soluble epoxide hydrolase inhibitors. J Med Chem 54:851–857. doi:10.1021/jm101273e

    CAS  Article  PubMed  Google Scholar 

  54. Tran KL, Aronov PA, Tanaka H, Newman JW, Hammock BD, Morisseau C (2005) Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the mammalian soluble epoxide hydrolase. Biochemistry 44:12179–12187. doi:10.1021/bi050842g

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230. doi:10.1021/ja003834q

    CAS  Article  PubMed  Google Scholar 

  57. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035

    CAS  Article  PubMed  Google Scholar 

  58. Waszkowycz B, Clark DE, Gancia E (2011) Outstanding challenges in protein-ligand docking and structure-based virtual screening. WIREs: Comput Mol Sci 1:229–259 doi:10.1002/wcms.18

  59. Weiner SJ, Kollman PA, Case DA et al (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784. doi:10.1021/ja00315a051

    CAS  Article  Google Scholar 

  60. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC

  61. Yamada T, Morisseau C, Maxwell JE, Argiriadi MA, Christianson DW, Hammock BD (2000) Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J Biol Chem 275:23082–23088. doi:10.1074/jbc.M001464200

    CAS  Article  PubMed  Google Scholar 

  62. Yu Z, Xu F, Huse LM et al (2000) Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res 87:992–998. doi:10.1161/01.res.87.11.992

    CAS  Article  PubMed  Google Scholar 

  63. Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010-2011 in review. J Mol Recognit 26:215–239. doi:10.1002/jmr.2266

    CAS  Article  PubMed  Google Scholar 

  64. Yuriev E, Holien J, Ramsland PA (2015) Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 28:581–604. doi:10.1002/jmr.2471

    CAS  Article  PubMed  Google Scholar 

  65. Zavareh E, Hedayati M, Rad L, Kiani A, Shahhosseini S, Faizi M, Tabatabai S (2014) Design, synthesis and biological evaluation of some oxadiazole derivatives as novel amide-based inhibitors of soluble epoxide hydrolase. Lett Drug Des Discov 11:721–730. doi:10.2174/1570180811666140220005530

    CAS  Article  Google Scholar 

  66. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. nonpolar gases. J Chem Phys 22:1420–1426. doi:10.1063/1.1740409

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Iran National Elites Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Saboury.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karami, L., Saboury, A.A., Rezaee, E. et al. Investigation of the binding mode of 1, 3, 4-oxadiazole derivatives as amide-based inhibitors for soluble epoxide hydrolase (sEH) by molecular docking and MM-GBSA. Eur Biophys J 46, 445–459 (2017). https://doi.org/10.1007/s00249-016-1188-0

Download citation

Keywords

  • Soluble epoxide hydrolase
  • Blood pressure
  • Inflammation
  • Molecular docking
  • Molecular dynamics simulation
  • MM-GBSA