Skip to main content

Advertisement

Log in

Modulating intracellular acidification by regulating the incubation time of proton caged compounds

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Boron WF (2004) Regulation of intracellular pH Adv. Physiol Educ 28:160–179

    Article  Google Scholar 

  • Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3 transport. J Gen Physiol 81:53–94

    Article  CAS  PubMed  Google Scholar 

  • Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9:519–531

    Article  CAS  PubMed  Google Scholar 

  • Carbone M, Zlateva T, Quaroni L (2013) Monitoring and manipulation of the pH of single cells using infrared spectromicroscopy and a molecular switch. Biochim Biophys Acta Gen Subj 1830(4):2989–2993

    Google Scholar 

  • Chegwidden WR, Dodgson SJ, Spencer IM (2000) The roles of carbonic anhydrase in metabolism cell growth and cancer in animals. Carbonic Anhydrases EXS 90(90):343–363

    Article  CAS  PubMed  Google Scholar 

  • Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794

    Article  CAS  PubMed  Google Scholar 

  • Choi I, Aalkjaer C, Boulpaep EL, Boron WF (2000) An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405:571–575

    Article  CAS  PubMed  Google Scholar 

  • Dean RT, Jessup W, Roberts CR (1984) Effects of exogenous amines on mammalian cells, with particular reference to membrane flow. Biochem J 217:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deitmer JW, Schlue WR (1989) An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells. J Physiol 411:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodgson SJ, Forster RE II, Storey BT, Mela L (1980) Mitochondrial carbonic anhydrase. Proc Natl Acad Sci USA 77(9):5562–5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2008) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J. 22:64–73

    Article  CAS  PubMed  Google Scholar 

  • Finbow ME, Harrison MA (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324:697–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutman M, Dan Huppert P, Pined E (1981) The pH jump: a rapid modulation of pH of aqueous solutions by a laser pulse. J Am Chem Soc 103:3709–3713

    Article  CAS  Google Scholar 

  • Harvey BJ, Eherenfeld J (1988) Role of Na exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium. J Gen Physiol 92:793–810

    Article  CAS  PubMed  Google Scholar 

  • Hulikova A, Vaughan-Jones RD, Swietach P (2011) Dual role of CO2/HCO3 buffer in the regulation of intracellular pH of three-dimensional tumor growths. J Biol Chem 286(16):13815–13826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itel F, Al-Samir S, Öberg F, Chami M, Kumar M, Supuran CT, Deen PMT, Meier W, Hedfalk K, Gros G, Endeward V (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J. 26:5182–5191

    Article  CAS  PubMed  Google Scholar 

  • Kabalka GW, Varma M, Varma RS, Srivastava PC, Knapp FF Jr (1986) Tosylation of alcohols. J Org Chem 51(12):2386–2388

    Article  CAS  Google Scholar 

  • Kustu S, Inwood W (2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol 13:103–110

    Article  CAS  PubMed  Google Scholar 

  • Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961

    Article  CAS  PubMed  Google Scholar 

  • Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125:11144–11145

    Article  CAS  PubMed  Google Scholar 

  • Obara M, Szeliga M, Albrecht J (2008) Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 52(6):905–919

    Article  CAS  PubMed  Google Scholar 

  • Orlowski J, Kandasamy RA, Shull GE (1992) Molecular cloning of putative members of the Na/H exchanger gene family. J Biol Chem 267(13):9331–9339

    CAS  PubMed  Google Scholar 

  • Overton E (1895) Über die osmotischen Eigenschaftender lebenden Pflanzen und Tierzelle. Vierteljahrsschr Naturforsch Ges Zürich 40:159–201

    Google Scholar 

  • Pedersen PL, Carafoli E (1987) Ion motive ATPases. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  • Pornpattananangkul D, Olson S, Aryal S, Sartor M, Huang C-M, Vecchio K, Zhang L (2010) Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano 4:1935–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouysségur J, Sardet C, Franchi A, L’Allemain G, Paris S (1984) A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci 81:4833–4837

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387:409–413

    Article  CAS  PubMed  Google Scholar 

  • Romero MF, Henry D, Nelson S, Harte PJ, Dillon AK, Sciortino CM (2000) Cloning and characterization of a Na+ driven anion exchanger (NDAE1): a new bicarbonate transporter. J Biol Chem 275:24552–24559

    Article  CAS  PubMed  Google Scholar 

  • Schulz KG, Riebesell U, Rost B, Thoms S, Zeebe RE (2006) Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Mar Chem 100:53–65

    Article  CAS  Google Scholar 

  • Soulet D, Gagnon B, Rivest S, Audette M, Paulin R (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 279:49355–49366

    Article  CAS  PubMed  Google Scholar 

  • Thwaites DT, Anderson CMH (2007) H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 92(4):603–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CZ, Yano H, Nagashima K, Seino S (2000) The Na+-driven Cl/HCO3 exchanger. J Biol Chem 275:35486–35490

    Article  CAS  PubMed  Google Scholar 

  • Wong P, Kleemann HW, Tannock IF (2002) Cytostatic potential of novel agents that inhibit the regulation of intracellular pH. Br J Cancer 87:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Carbone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, M., Sabbatella, G., Antonaroli, S. et al. Modulating intracellular acidification by regulating the incubation time of proton caged compounds. Eur Biophys J 45, 565–571 (2016). https://doi.org/10.1007/s00249-016-1122-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1122-5

Keywords

Navigation