Skip to main content
Log in

Actin bundles cross-linked with \(\upalpha\)-actinin studied by nanobeam X-ray diffraction

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have performed scanning nano-beam small-angle X-ray scattering (nano-SAXS) experiments on in vitro-formed actin filaments cross-linked with \(\upalpha\)-actinin. The experimental method combines a high resolution in reciprocal space with a real space resolution as given by the spot-size of the nano-focused X-ray beam, and opens up new opportunities to study local super-molecular structures of actin filaments. In this first proof-of-concept, we show that the local orientation of actin bundles formed by the cross-linking can be visualized by the X-ray darkfield maps. The filament bundles give rise to highly anisotropic diffraction patterns showing distinct streaks perpendicular to the bundle axes. Interestingly, some diffraction patterns exhibit a fine structure in the form of intensity modulations allowing for a more detailed analysis of the order within the bundles. A first empirical quantification of these modulations is included in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelini T, Liang H, Wriggers W, Wong GCL (2003) Like-charge attraction between polyelectrolytes induced by counterion charge density waves. PNAS 100:8634–8637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini T, Liang H, Wriggers W, Wong G (2005) Direct observation of counterion organization in F-actin polyelectrolyte bundles. Eur Phys J E 16:389–400

    Article  CAS  PubMed  Google Scholar 

  • Bartels M, Krenkel M, Haber J, Wilke RN, Salditt T (2015) X-ray holographic imaging of hydrated biological cells in solution. Phys Rev Lett 114:048103

    Article  CAS  PubMed  Google Scholar 

  • Claessens MM, Bathe M, Frey E, Bausch AR (2006) Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat Mater 5:748–753

    Article  CAS  PubMed  Google Scholar 

  • Consortium U et al (2014) UniProt: a hub for protein information. Nuc Acids Res gku989

  • Egelman E, DeRosier DJ (1982) The Fourier transform of actin and other helical systems with cumulative random angular disorder. Acta Crystallogr Sect A 38:796–799

    Article  Google Scholar 

  • Giewekemeyer K, Thibault P, Kalbfleisch S, Beerlink A, Kewish CM, Dierolf M, Pfeiffer F, Salditt T (2010) Quantitative biological imaging by ptychographic X-ray diffraction microscopy. PNAS 107:529–534

    Article  CAS  PubMed  Google Scholar 

  • Hampton CM, Taylor DW, Taylor KA (2007) Novel structures for \(\alpha\)-actinin: F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton. J Mol Biol 368:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes K, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44

    Article  CAS  PubMed  Google Scholar 

  • Howells M, Beetz T, Chapman H, Cui C, Holton J, Jacobsen C, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro D, Spence J, Starodub D (2009) An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc Rel Phenom 170:4–12. http://www.sciencedirect.com/science/article/pii/S0368204808001424

  • Huxley H, Brown W (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383-IN16

    Article  Google Scholar 

  • Isambert H, Venier P, Maggs A, Fattoum A, Kassab R, Pantaloni D, Carlier M-F (1995) Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270:11437–11444

    Article  CAS  PubMed  Google Scholar 

  • Kalbfleisch S, Osterhoff M, Giewekemeyer K, Neubauer H, Kruger SP, Hartmann B, Bartels M, Sprung M, Leupold O, Siewert F, Salditt T (2010) The holography endstation of beamline P10 at PETRA III. AIP Conf Proc 1234:433–436

    Article  Google Scholar 

  • Kalbfleisch S, Neubauer H, Krüger SP, Bartels M, Osterhoff M, Mai DD, Giewekemeyer K, Hartmann B, Sprung M, Salditt T (2011) The Göttingen Holography Endstation of Beamline P10 at PETRA III/DESY. AIP Conf Proc 1365:96–99

    Article  Google Scholar 

  • Korn ED (1982) Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev 62:672–737

    CAS  PubMed  Google Scholar 

  • Lieleg O, Claessens MM, Bausch AR (2010) Structure and dynamics of cross-linked actin networks. Soft Matter 10:218–225

    Article  Google Scholar 

  • Meisburger SP, Warkentin M, Chen H, Hopkins JB, Gillilan RE, Pollack L, Thorne RE (2013) Breaking the radiation damage limit with cryo-SAXS. Biophys J 104:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugent KA (2010) Coherent methods in the X-ray sciences. Adv Phys 59:1–99

    Article  Google Scholar 

  • Paganin DM (2006) Coherent X-ray optics. Oxford University Press, New York

    Book  Google Scholar 

  • Pelletier O, Pokidysheva E, Hirst L, Bouxsein N, Li Y, Safinya C (2003) Structure of actin cross-linked with \(\alpha\)-actinin: a network of bundles. Phys Rev Lett 91:148102

    Article  CAS  PubMed  Google Scholar 

  • Priebe M, Bernhardt M, Blum C, Tarantola M, Bodenschatz E, Salditt T (2014) Scanning X-ray nanodiffraction on dictyostelium discoideum. Biophys J 107:2662–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4:840–848

    Article  CAS  Google Scholar 

  • Salditt T, Kalbfleisch S, Osterhoff M, Krüger SP, Bartels M, Giewekemeyer K, Neubauer H, Sprung M (2011) Partially coherent nano-focused X-ray radiation characterized by Talbot interferometry. Opt Express 19:9656–9675

    Article  CAS  PubMed  Google Scholar 

  • Schroer CG, Falkenberg G (2014) Hard X-ray nanofocusing at low-emittance synchrotron radiation sources. J Synchrotron Radiat 21:996–1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Suzuki A, Zettsu N, Kohmura Y, Senba Y, Ohashi H, Yamauchi K, Ishikawa T (2011) Towards high-resolution ptychographic X-ray diffraction microscopy. Phys Rev B 83:214109

    Article  Google Scholar 

  • von der Ecken J, Müller M, Lehman W, Manstein D, Penczek P, Raunser S (2015) Structure of the F-actin tropomyosin complex. Nature 519:114

    Article  PubMed  Google Scholar 

  • Weinhausen B, Nolting J-F, Olendrowitz C, Langfahl-Klabes J, Reynolds M, Salditt T, Köster S (2012) X-ray nano-diffraction on cytoskeletal networks. New J Phys 14:085013

    Article  Google Scholar 

  • Weinhausen B, Saldanha O, Wilke RN, Dammann C, Priebe M, Burghammer M, Sprung M, Köster S (2014) Scanning X-ray nanodiffraction on living eukaryotic cells in microfluidic environments. Phys Rev Lett 112:088102

    Article  Google Scholar 

  • Wilke RN, Priebe M, Bartels M, Giewekemeyer K, Diaz A, Karvinen P, Salditt T (2012) Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction. Opt Express 20:19232–19254

    Article  CAS  PubMed  Google Scholar 

  • Wilke RN, Vassholz M, Salditt T (2013) Semi-transparent central stop in high-resolution X-ray ptychography using Kirkpatrick-Baez focusing. Acta Crystallogr Sect A 69:490–497

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christine Wurm and Andreas Bausch for an initial insight into actin preparation; Markus Osterhoff, Martin Krenkel, and Bastian Hartmann for their contributions to instrumentation and alignment of the GINIX instrument; Michael Sprung and Alexey Zozulya for excellent working conditions at the P10 beamline; and Sarah Köster for helpful discussions. Financial support by SFB 937/A11 of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author contributions

T.S. designed the research, M.T. prepared the samples; all authors carried out the experiment; M.T. analyzed data; M.T. and T.S. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Salditt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Töpperwien, M., Priebe, M. & Salditt, T. Actin bundles cross-linked with \(\upalpha\)-actinin studied by nanobeam X-ray diffraction. Eur Biophys J 45, 383–392 (2016). https://doi.org/10.1007/s00249-015-1107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1107-9

Keywords

Navigation