Skip to main content
Log in

Two types of syringomycin E channels in sphingomyelin-containing bilayers

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The influence of dipole modifiers on the characteristics of single syringomycin E (SRE) channels in bilayers comprising DOPS, DOPE, sphingolipids (sphingomyelin, N-stearoyl-phytosphingosine or N-stearoyl-sphinganine) and sterols (cholesterol or ergosterol) was studied. The effects of dipole modifiers on SRE channel amplitudes were dependent upon the sphingolipid type and were not affected by the membrane sterol content. A decrease in the dipole potential of phytosphingosine- and sphinganine-containing bilayers, which was induced by the adsorption of phloretin, led to a reduction in conductance; however, an increase in this potential, which occurred upon the addition of RH 421, led to an enhancement in the conductance of SRE channels. Two channel populations, one of which is sensitive while the other is insensitive to modifiers, were found in sphingomyelin-containing bilayers. This indicates that SRE channels are distributed in lipid domains with different dipole potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SRE:

Syringomycin E

DOPS:

1,2-dioleoyl-sn-glycero-3-phospho-l-serine

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

Chol:

Cholesterol

Erg:

Ergosterol

SM:

Brain porcine sphingomyelin (Brain, Porcine)

PhSG:

N-stearoyl-phytosphingosine from Saccharomyces cerevisiae

SG:

N-stearoyl-D-erythro-sphinganine

References

  • Aittoniemi J, Róg T, Niemelä P, Pasenkiewicz-Gierula M, Karttunen M, Vattulainen I (2006) Tilt: major factor in sterols’ ordering capability in membranes. J Phys Chem B 110:25562–25564

    Article  PubMed  CAS  Google Scholar 

  • Andersen OS, Finkelstein A, Katz I, Cass A (1976) Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol 67:749–771

    Article  PubMed  CAS  Google Scholar 

  • Apetrei A, Mereuta L, Luchian T (2009) The RH 421 styryl dye induced, pore model-dependent modulation of antimicrobial peptides activity in reconstituted planar membranes. Biochim Biophys Acta 1790:809–816

    Article  PubMed  CAS  Google Scholar 

  • Asandei A, Mereuta L, Luchian T (2008) Influence of membrane potentials upon reversible protonation of acidic residues from the OmpF eyelet. Biophys Chem 135:32–40

    Article  PubMed  CAS  Google Scholar 

  • Berring EE, Borrenpohl K, Fliesler SJ, Serfis AB (2005) A comparison of the behavior of cholesterol and selected derivatives in mixed sterol-phospholipid Langmuir monolayers: a fluorescence microscopy study. Chem Phys Lipids 136:1–12

    Article  PubMed  CAS  Google Scholar 

  • Bidwai AP, Takemoto JY (1987) Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides. Proc Natl Acad Sci USA 84:6755–6759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brockman HL, Momsen MM, Brown RE, He L, Chun J, Byun HS, Bittman R (2004) The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys J 87:1722–1731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cournia Z, Ullmann GM, Smith JC (2007) Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study. J Phys Chem 111:1786–1801

    Article  CAS  Google Scholar 

  • Cseh R, Hetzer M, Wolf K, Kraus J, Bringmann G, Benz R (2000) Interaction of phloretin with membranes: on the mode of action of phloretin at the water-lipid interface. Eur Biophys J 29:172–183

    Article  PubMed  CAS  Google Scholar 

  • Disalvo EA, Lairion F, Martini F, Almaleck H (2004) Water in biological membranes at interfaces: does it play a functional role? J Argent Chem Soc 92:1–22

    CAS  Google Scholar 

  • Efimova SS, Ostroumova OS (2012) Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir 28:9908–9914

    Article  PubMed  CAS  Google Scholar 

  • Efimova SS, Schagina LV, Ostroumova OS (2014) Channel forming activity of cecropins in lipid bilayers. Effect of agents modifying the membrane dipole potential. Langmuir 30:7884–7892

    Article  PubMed  CAS  Google Scholar 

  • Efimova SS, Zakharov VV, Ostroumova OS (2015) Effects of dipole modifiers on the channel-forming activity of amyloid and amyloid-like peptides in lipid bilayers. Cell Tissue Biol 9:250–259

    Article  Google Scholar 

  • Feigin AM, Takemoto JY, Wangspa R, Teeter JH, Brand JG (1996) Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers. J Membr Biol 149:41–47

    Article  PubMed  CAS  Google Scholar 

  • Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem 273:11062–11068

    Article  PubMed  CAS  Google Scholar 

  • Gross DC, DeVay JE (1977) Chemical properties of syringomycin and syringotoxin: toxigenic peptides produced by Pseudomonas syringae. J Appl Bacteriol 43:453–463

    Article  CAS  Google Scholar 

  • Hwang TC, Koeppe RE, Andersen OS (2003) Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42:13646–13658

    Article  PubMed  CAS  Google Scholar 

  • Idkowiak-Baldys J, Grilley MM, Takemoto JY (2004) Sphingolipid C4 hydroxylation influences properties of yeast detergent-insoluble glycolipid-enriched membranes. FEBS Lett 569:272–276

    Article  PubMed  CAS  Google Scholar 

  • Kaulin YA, Schagina LV, Bezrukov SM, Malev VV, Feigin AM, Takemoto JY, Teeter JH, Brand JG (1998) Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys J 74:2918–2925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaulin YA, Takemoto JY, Schagina LV, Ostroumova OS, Wangspa R, Teeter JH, Brand JG (2005) Sphingolipids influence the sensitivity of lipid bilayers to fungicide, syringomycin E. J Bioenerg Biomembr 37:339–348

    Article  PubMed  CAS  Google Scholar 

  • Lairion F, Disalvo EA (2004) Effect of phloretin on the dipole potential of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol monolayers. Langmuir 20:9151–9155

    Article  PubMed  CAS  Google Scholar 

  • Löfgren H, Pascher I (1977) Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem Phys Lipids 20:273–284

    Article  PubMed  Google Scholar 

  • Luchian T, Mereuta L (2006) Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes. Langmuir 22:8452–8457

    Article  PubMed  CAS  Google Scholar 

  • Lundbaek JA, Koeppe RE, Andersen OS (2010) Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proc Natl Acad Sci USA 107:15427–15430

    Article  PubMed  PubMed Central  Google Scholar 

  • Malev VV, Schagina LV, Gurnev PA, Takemoto JY, Nestorovich EM, Bezrukov SM (2002) Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys J 82:1985–1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malkov DY, Sokolov VS (1996) Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochim Biophys Acta 1278:197–204

    Article  PubMed  Google Scholar 

  • Mereuta L, Luchian T, Park Y, Hahm KS (2008) Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2–20) antimicrobial peptide. Biochem Biophys Res Commun 373:467–472

    Article  PubMed  CAS  Google Scholar 

  • Mereuta L, Asandei A, Luchian T (2011) Meet me on the other side: trans-bilayer modulation of a model voltage-gated ion channel activity by membrane electrostatics asymmetry. PLoS One 6:e25276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montal M, Muller P (1972) Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc Nat Acad Sci USA 69:3561–3566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morf WE (1977) Calculation of liquid-junction potentials and membrane potentials on the basis of the Planck theory. Anal Chem 49:810–813

    Article  CAS  Google Scholar 

  • Ostroumova OS, Schagina LV (2009) The effect of phloretin on sphingolipid containing membranes modified by syringomycin E. Biochem (Moscow) Suppl Ser A Membr Cell Biol 3:281–285

    Article  Google Scholar 

  • Ostroumova OS, Malev VV, Kaulin YuA, Gurnev PA, Takemoto JY, Schagina LV (2005) Voltage-dependent synchronization of gating of syringomycin E ion channels. FEBS Lett 579:5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Ostroumova OS, Gurnev PA, Schagina LV, Bezrukov SM (2007a) Asymmetry of syringomycin E channel studied by polymer partitioning. FEBS Lett 581:804–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostroumova OS, Kaulin YA, Gurnev AP, Schagina LV (2007b) Effect of agents modifying the membrane dipole potential on properties of syringomycin E channels. Langmuir 23:6889–6892

    Article  PubMed  CAS  Google Scholar 

  • Ostroumova OS, Schagina LV, Malev VV (2008) The effect of the dipole potential of lipid bilayers on the properties of ion channels formed by cyclic lipodepsipeptides syringomycin E. Biochem (Moscow) Suppl Ser A Membr Cell Biol 2:259–270

    Article  Google Scholar 

  • Ostroumova OS, Malev VV, Ilin MG, Schagina LV (2010) Surfactin activity depends on the membrane dipole potential. Langmuir 26:15092–15097

    Article  PubMed  CAS  Google Scholar 

  • Ostroumova OS, Efimova SS, Schagina LV (2011a) 5- and 4′-hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore. Biochim Biophys Acta Biomembr 1808:2051–2058

    Article  CAS  Google Scholar 

  • Ostroumova OS, Schagina LV, Mosevitsky MI, Zakharov VV (2011b) Ion channel activity of brain abundant protein brain acid-soluble protein-1 in planar lipid bilayers. FEBS J 278:461–469

    Article  PubMed  CAS  Google Scholar 

  • Ostroumova OS, Efimova SS, Chulkov EG, Schagina LV (2012a) The interaction of dipole modifiers with polyene-sterol complexes. PLoS One 7(9):e45135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostroumova OS, Efimova SS, Schagina LV (2012b) Probing amphotericin B single channel activity by membrane dipole modifiers. PLoS One 7(1):e30261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostroumova OS, Efimova SS, Mikhailova EV, Schagina LV (2014) The interaction of dipole modifiers with amphotericin-ergosterol complexes. Effects of phospholipid and sphingolipid membrane composition. Eur Biophys J 43:207–215

    Article  PubMed  CAS  Google Scholar 

  • Ostroumova OS, Efimova SS, Malev VV (2015) Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. Int Rev Cell Mol Biol 315:245–297

    Article  PubMed  Google Scholar 

  • Rokitskaya TI, Kotova EA, Antonenko YN (2002) Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel. Biophys J 82:865–873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schagina LV, Kaulin YA, Feigin AM, Takemoto JY, Brand JG, Malev VV (1998) Properties of ionic channels formed by the antibiotic syringomycin E in lipid bilayers: dependence on the electrolyte concentration in the bathing solution. Membr Cell Biol 12:537–555

    PubMed  CAS  Google Scholar 

  • Serfis AB, Brancato S, Fliesler SJ (2001) Comparative behavior of sterols in phosphatidylcholine-sterol monolayer films. Biochim Biophys Acta 1511:341–348

    Article  PubMed  CAS  Google Scholar 

  • Serra MD, Fagiuoli G, Nordera P, Bernhart I, Della Volpe C, Di Giorgio D, Ballio A, Menestrina G (1999) The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Mol Plant Microbe Interact 12:391–400

    Article  PubMed  Google Scholar 

  • Sinden S, DeVay J, Backman P (1971) Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae, and its role in the bacterial canker disease of peach trees. Physiol Plant Pathol 1:199–213

    Article  CAS  Google Scholar 

  • Stock SD, Hama H, Radding JA, Young DA, Takemoto JY (2000) Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Antimicrob Agents Chemother 44:1174–1180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, Garlid KD (1992) On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes. J Biol Chem 267:19147–19154

    PubMed  CAS  Google Scholar 

  • Takemoto JY, Brand JG, Kaulin YA, Malev VV, Schagina LV, Blasko K (2003) The syringomycins: lipodepsipeptide pore formers from plant bacterium Pseudomonas syringae. In: Menestrina G, Dalla Serra M, Lazarovici P (eds) Pore-forming peptides and protein toxins. Taylor and Francis, London, pp 260–271

    Google Scholar 

  • Taniguchi Y, Ohba T, Miyata H, Ohki K (2006) Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochim Biophys Acta 1758:145–153

    Article  PubMed  CAS  Google Scholar 

  • Tarahovsky YS, Muzafarov EN, Kim YA (2008) Raft making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol Cell Biochem 314:65–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation of Science (#14-14-00565) (AAZ and OSO), the Program “Molecular and Cell Biology” of RAS (LVS), SS-1721.2014.4 and SP-69.2015.4 (SSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana S. Efimova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, S.S., Zakharova, A.A., Schagina, L.V. et al. Two types of syringomycin E channels in sphingomyelin-containing bilayers. Eur Biophys J 45, 91–98 (2016). https://doi.org/10.1007/s00249-015-1101-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1101-2

Keywords

Navigation