Skip to main content
Log in

Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Surfactin, a sustainable and environmentally friendly surface active agent, is used as a model to study the adsorption of biosurfactants at hydrophobic and hydrophilic solid–liquid interfaces as well as the air–liquid interface. Surfactin adsorption was monitored as a function of time and concentration using surface plasmon resonance (SPR) technique in the case of the solid–liquid interfaces or the drop shape analysis (DSA) technique in the case of the air–liquid interface. The results obtained in this study showed that surfactin adsorption at the “hard” hydrophobic (functionalized with octadecanethiol) solid–liquid and the “soft” air–liquid interface were 1.12 ± 0.01 mg m−2 (area per molecule of 157 ± 2 Å2) and 1.11 ± 0.05 mg m−2 (area per molecule of 159 ± 7 Å2), respectively, demonstrating the negligible effect of the interface “hardness” on surfactin adsorption. The adsorption of surfactin at the hydrophilic (functionalized with β-mercaptoethanol) solid–liquid interface was about threefold lower than its adsorption at the hydrophobic–liquid interfaces, revealing the importance of hydrophobic interaction in surfactin adsorption process. The affinity constant of surfactin for the investigated interfaces follows the following order: air > octadecanethiol > β-mercaptoethanol. Biosurfactants, such as surfactin, are expected to replace the conventional fossil-based surfactants in several applications, and therefore the current study is a contribution towards the fundamental understanding of biosurfactant behavior, on a molecular level, at hydrophobic and hydrophilic solid–liquid interfaces in addition to the air–liquid interface. Such understanding might aid further optimization of the utilization of surfactin in a number of industrial applications such as enhanced oil recovery, bioremediation, and detergency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  PubMed  Google Scholar 

  • Bonmatin J-M, Cenest M, Labbe H, Ptak M (1994) Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1HNMR, distance geometry, and molecular dynamics. Biopolymers 34:975–986

    Article  CAS  PubMed  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damos FS, Luz RCS, Kubota LT (2005) Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance. Langmuir 21:602–609

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn HE, Altenburg BSF, Kooyman RPH, Greve J (1991) Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance. Opt Commun 82:425–432

    Article  Google Scholar 

  • de Bruijn HE, Minor M, Kooyman RPH, Greve J (1993) Thickness and dielectric constant determination of thin dielectric layers. Opt Commun 95:183–188

    Article  Google Scholar 

  • Delgado C, Merchan MD, Velazquez MM, Anaya J (2006) Effect of surfactant structure on the adsorption of carboxybetaines at the air–water interface. Colloid surf A 280:17–22

    Article  CAS  Google Scholar 

  • Gallet X, Deleu M, Razafindralambo H, Jacques P, Thonart P, Paqout M, Brasseur R (1999) Computer simulation of surfactin conformation at a hydrophobic/hydrophilic interface. Langmuir 15:2409–2413

    Article  CAS  Google Scholar 

  • Giribabu K, Ghosh P (2007) Adsorption of nonionic surfactants at fluid–fluid interfaces: importance in the coalescence of bubbles and drops. Chem Eng Sci 62:3057–3067

    Article  CAS  Google Scholar 

  • Hajfarajollah H, Mehvari S, Habibian M, Mokhtarani B, Noghabi KA (2015) Rhamnolipid biosurfactant adsorption on a plasma-treated polypropylene surface to induce antimicrobial and antiadhesive properties. RSC Adv 5:33089–33097

    Article  CAS  Google Scholar 

  • He L, Malcolm AS, Dimitrijev M, Onaizi SA, Shen H-H, Holt SA, Dexter AF, Thomas RK, Middelberg APJ (2009) Cooperative tuneable interactions between a designed peptide biosurfactant and positional isomers of SDOBS at the air–water interface. Langmuir 25:4021–4026

    Article  CAS  PubMed  Google Scholar 

  • He L, Onaizi SA, Dimitrijev-Dwyer M, Malcolm AS, Shen H-H, Dong C, Holt SA, Thomas RK, Middelberg APJ (2011) Comparison of positional surfactant isomers for displacement of rubisco protein from the air–water interface. J Colloid Interface Sci 360:617–622

    Article  CAS  PubMed  Google Scholar 

  • Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matusumoto M (1995) Significance of β-sheet formation for micellization and surface adsorption on surfactin. Colloids Surf B 4:341–348

    Article  CAS  Google Scholar 

  • Jang SS, Goddard WA III (2006) Structures and properties of Newton black films characterized using molecular dynamics simulations. J Phys Chem B 110:7992–8001

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma A, Ouchida A, Shima T, Sugino H, Isono H, Tamura G, Arima K (1969) Confirmation of the structure of surfactin by mass spectrometry. Agric Biol Chem 33:1669–1671

    Article  CAS  Google Scholar 

  • Kiraly Z, Borner RHK, Findenegg GH (1997) Adsorption and aggregation of C8E4 and C8G1 nonionic surfactants on hydrophilic silica studied by calorimetry. Langmuir 13:3308–3315

    Article  CAS  Google Scholar 

  • Levitz PE (2002) Adsorption of non-ionic surfactants at the solid/water interface. Colloids Surf A 205:31–38

    Article  CAS  Google Scholar 

  • Li PX, Li ZX, Shen H-H, Thomas RK, Penfold J, Lu JR (2013) Application of the Gibbs equation to the adsorption of nonionic surfactants and polymers at the air–water interface: comparison with surface excesses determined directly using neutron reflectivity. Langmuir 29:9324–9334

    Article  CAS  PubMed  Google Scholar 

  • Lin S-Y, Dong C, Hsu T-J, Hsu C-T (2002) Determination of adsorption of an ionic surfactant on latex from surface tension measurements. Colloid surf A 196:189–198

    Article  CAS  Google Scholar 

  • Lindheimer M, Keh E, Zaini S, Partyka S (1990) Interfacial aggregation of nonionic surfactants onto silica gel: calorimetric evidence. J Colloid Interface Sci 138:83–91

    Article  CAS  Google Scholar 

  • Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12:60–67

    Article  CAS  Google Scholar 

  • Maget-Dana R, Ptak M (1992) Interfacial properties of surfactin. J Colloid Interface Sci 153:285–291

    Article  CAS  Google Scholar 

  • Meylheuc T, Renault M, Bellon-Fontaine MN (2006) Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes. Int J Food Microbil 109:71–78

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environmental pollution. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29:67–74

    Article  CAS  PubMed  Google Scholar 

  • Onaizi SA, Malcolm AS, He L, Middelberg APJ (2007) Directed disassembly of an interfacial rubisco protein network. Langmuir 23:6336–6341

    Article  CAS  PubMed  Google Scholar 

  • Onaizi SA, He L, Middelberg APJ (2009a) Proteolytic cleaning of a surface-bound rubisco protein stain. Chem Eng Sci 64:3868–3878

    Article  CAS  Google Scholar 

  • Onaizi SA, He L, Middelberg APJ (2009b) Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloid Surf B 72:68–74

    Article  CAS  Google Scholar 

  • Onaizi SA, He L, Middelberg APJ (2010) The construction, fouling and enzymatic cleaning of a textile dye surface. J Colloid Interface Sci 351:203–209

    Article  CAS  PubMed  Google Scholar 

  • Onaizi SA, Nasser MS, Twaiq FA (2012) Micellization and interfacial behavior of a synthetic surfactant–biosurfactant mixture. Colloid Surf A 415:388–393

    Article  CAS  Google Scholar 

  • Onaizi SA, Nasser MS, Twaiq FA (2014a) Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid Polym Sci 292:1649–1656

    Article  CAS  Google Scholar 

  • Onaizi SA, Nasser MS, Twaiq FA (2014b) Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. Eur Biophys J 43:191–198

    Article  CAS  PubMed  Google Scholar 

  • Onaizi SA, Nasser MS, Al-Lagtah NMA (2015) Adsorption of an anionic surfactant at air–liquid and different solid–liquid interfaces from solutions containing high counter-ion concentration. Colloid Polym Sci 293:2891–2899

    Article  CAS  Google Scholar 

  • Oudshoorn RGC, Kooyman RPH, Greve J (1996) Refractive index and layer thickness of an adsorbing protein as reporters of monolayer formation. Thin Solid Films 284–285:836–840

    Article  Google Scholar 

  • Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    Article  CAS  PubMed  Google Scholar 

  • Partyka S, Zaina S, Lindheimer M, Brun B (1984) The adsorption of non-ionic surfactants on a silica gel. Colloid Surf 12:255–270

    Article  CAS  Google Scholar 

  • Peterlinz KA, Georgiadis R (1996) In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir 12:4731–4740

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Yang S, Zhao Y, Zhou J, Xu T, Liu W (2002) Friction and wear studies of octadecyltrichlorosilane SAM on silicon. Tribol Lett 13:233–239

    Article  CAS  Google Scholar 

  • Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  CAS  PubMed  Google Scholar 

  • Rojas OJ, Macakova L, Blomberg E, Emmer A, Claesson PM (2002) Fluorosurfactant self-assembly at solid/liquid interfaces. Langmuir 18:8085–8095

    Article  CAS  Google Scholar 

  • Scopelliti PE, Borgonovo A, Indrieri M, Giorgetti L, Bongiorno G, Carbone R, Podesta A, Milani P (2010) The effect of surface nanometre-scale morphology on protein adsorption. PLoS ONE 5:e11862

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen H-H, Thomas RK, Chen C-Y, Darton RC, Baker SC, Penfold J (2009) Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant? Langmuir 25:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Shen H-H, Lin T-W, Thomas RT, Taylor DJF, Penfold J (2011) Surfactin structures at interfaces and in solution: the effect of pH and cations. J Phys Chem B 115:4427–4435

    Article  CAS  PubMed  Google Scholar 

  • Thimon L, Peypoux F, Michel G (1992) Interaction of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol Lett 14:713–718

    Article  CAS  Google Scholar 

  • Tiberg F, Brinck J, Grant L (2000) Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface. Curr Opin Colloid Interface Sci 4:411–419

    Article  Google Scholar 

  • Zou A-H, Liu J, Mu B-Z (2010) Interaction between the natural lipopeptide [Glu1, Asp5] surfactin-C15 and hemoglobin: a spectroscopic and electrochemical investigation. Colloid Surf A 369:154–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onaizi, S.A., Nasser, M.S. & Al-Lagtah, N.M.A. Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. Eur Biophys J 45, 331–339 (2016). https://doi.org/10.1007/s00249-015-1099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1099-5

Keywords

Navigation