Skip to main content
Log in

Structural analysis of inter-genus complexes of V-antigen and its regulator and their stabilization by divalent metal ions

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Gram-negative bacteria like Yersinia, Pseudomonas, and Aeromonas need type III secretion system (T3SS) for their pathogenicity. V-antigen and its regulator are essential for functioning of T3SS. There is significant functional conservation amongst V-antigen and its regulator belonging to the Ysc family. In this study, we have structurally characterized the inter-genus complexes of V-antigen and its regulator. ConSurf analysis demonstrates that V-antigens belonging to the Ysc family show high structural identity predominantly confined to the two long helical regions. The regulator of V-antigen shows high conservation in its first intramolecular coiled-coil domain, responsible for interaction with V-antigen. ∆LcrG(1–70) localizes within the groove formed by long helices of LcrV, as observed in PcrV-∆PcrG(13–72) interaction. Inter-genus complexes of LcrV-PcrG and PcrV-LcrG exhibited elongated conformation and 1:1 heterodimeric state like the native complex of PcrV-PcrG and LcrV-LcrG. Both native and inter-genus complexes showed rigid tertiary structure, solvent-exposed hydrophobic patches, and cooperative melting behavior with high melting temperature. LcrV-PcrG and PcrV-LcrG showed nanomolar affinity of interaction, identical to PcrV-PcrG interaction, but stronger than LcrV-LcrG interaction. Calcium (a secretion blocker of T3SS) propels all the complexes towards a highly monodisperse form. Calcium and magnesium increase the helicity of the native and inter-genus complexes, and causes helix–helix stabilization. Stabilization of helices leads to a slight increase in the melting temperature by 1.5–2.0 °C. However, calcium does not alter the affinity of interaction of V-antigen and its regulator, emphasizing the effect of divalent of cations at the structural level without any regulatory implications. Therefore, the structural conservation of these inter-genus complexes could be the basis for their functional complementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ysc-Yop:

Yersinia secretion component-Yersinia outer protein

T3SS:

Type III secretion system

SEC:

Size-exclusion chromatography

DLS:

Dynamic light scattering

CD:

Circular dichroism

SPR:

Surface plasmon resonance

MSA:

Multiple sequence alignment

MCS:

Multiple cloning site

LB:

Luria–Bertani

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

Ni-NTA:

Nickel-nitrilotriacetic acid

EGS:

Ethylene glycol bis[succinimidyl succinate]

Tm :

Melting temperature

PDI:

Polydispersity index

References

  • Allmond LR, Karaca TJ, Nguyen VN, Nguyen T, Wiener-Kronish JP, Sawa T (2003) Protein binding between PcrG PcrV and PcrH PopB/PopD encoded by the pcrGVHpopBD operon of the Pseudomonas aeruginosa type III secretion system. Infect Immun 71(4):2230–2233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38 (Web Server issue):W529–W533

  • Basu A, Das U, Dey S, Datta S (2014) PcrG protects the two long helical oligomerization domains of PcrV, by an interaction mediated by the intramolecular coiled-coil region of PcrG. BMC Struct Biol. 14:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Bottone E (1997) Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev 10:257–276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Botzenhart K, Puhr OF, Döring G (1985) Pseudomonas aeruginosa in the oral cavity: occurrence and age distribution of adult germ carriers. Zentralbl Bakteriol Mikrobiol Hyg B 180:471–479

    CAS  PubMed  Google Scholar 

  • Broz P, Mueller CA, Müller SA, Philippsen A, Sorg I, Engel A, Cornelis GR (2007) Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 65:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Carter PB (1975) Pathogenicity of Yersinia enterocolitica for mice. Infect Immun 11:164–170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903

    Article  PubMed  Google Scholar 

  • Cornelis GR (2002) The Yersinia YscYop type III’ weaponry. Nat Rev Mol Cell Biol 3:742–752

    Article  CAS  PubMed  Google Scholar 

  • Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825

    Article  CAS  PubMed  Google Scholar 

  • Cornelis GR, Laroche Y, Balligand G, Sory MP, Wauters G (1987) Yersinia enterocolitica, a primary model for bacterial invasiveness. Rev Infect Dis 9:64–87

    Article  CAS  PubMed  Google Scholar 

  • Costa TRD, Edqvist PJ, Broms JE, Ahlund MK, Forsberg A, Francis MS (2010) YopD self-assembly and binding to LcrV facilitate type III secretion activity by Yersinia pseudotuberculosis. J Biol Chem 285:25269–25284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cover TL, Aber RC (1989) Yersinia enterocolitica. N Engl J Med 321:16–24

    Article  CAS  PubMed  Google Scholar 

  • Deane JE, Roversi P, Cordes FS, Johnson S, Kenjale R, Daniell S, Booy F, Picking WD, Picking WL, Blocker AJ, Lea SM (2006) Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci 103(33):12529–12533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS (2004) The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 12:301–306

    CAS  PubMed  Google Scholar 

  • Faudry E, Job V, Dessen A, Attree I, Forge V (2007) Type III secretion system translocator has a molten globule conformation both in its free and chaperone bound forms. FEBS J 274:3601–3610

    Article  CAS  PubMed  Google Scholar 

  • Forsberg A, Viitanen AM, Skurnik M, Wolf-Watz H (1991) The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 5:977–986

    Article  CAS  PubMed  Google Scholar 

  • Frithz-Lindsten E, Holmström A, Jacobsson L, Soltani M, Olsson J, Rosqvist R, Forsberg A (1998) Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis. Mol Microbiol 29:1155–1165

    Article  CAS  PubMed  Google Scholar 

  • Galán JE, Wolf Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    Article  PubMed  Google Scholar 

  • Gébus C, Faudry E, Bohn YS, Elsen S, Attree I (2008) Oligomerization of PcrV and LcrV, protective antigens of Pseudomonas aeruginosa and Yersinia pestis. J Biol Chem 283:23940–23949

    Article  PubMed  Google Scholar 

  • Giamarellou H (2000) Therapeutic guidelines for Pseudomonas aeruginosa infections. Int J Antimicrob Agents 16:103–106

    Article  CAS  PubMed  Google Scholar 

  • Goure J, Broz P, Attree O, Cornelis GR, Attree I (2005) Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J Infect Dis 192:218–225

    Article  CAS  PubMed  Google Scholar 

  • Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I (2004) The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 72:4741–4750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grutzkau A, Hanski C, Hahn H, Riecken E (1990) Involvement of M cells in the bacterial invasion of Peyer’s patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 31:1011–1015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hakansson S, Bergman T, Vanooteghem JC, Cornelis G, Wolf-Watz H (1993) YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun 61:71–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Håkansson S, Schesser K, Persson C, Galyov EE, Rosqvist R, Homblé F, Wolf-Watz H (1996) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact dependent membrane disrupting activity. EMBO J 15:5812–5823

    PubMed Central  PubMed  Google Scholar 

  • Hamad MA, Nilles ML (2007) Structure function analysis of the C terminal domain of LcrV from Yersinia pestis. J Bacteriol 189:6734–6739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanski C, Kutschka U, Schmoranzer HP, Naumann M, Stallmach A, Hahn H, Menge H, Riecken EO (1989) Immunohistochemical and electron microscopic study of interaction of Yersinia enterocolitica serotype O:8 with intestinal mucosa during experimental enteritis. Infect Immun 57:673–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hauser A, Cobb E, Bodi M, Mariscal D, Vallés J (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30:521–528

    Article  CAS  PubMed  Google Scholar 

  • Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Reviews 7:654–665

    CAS  Google Scholar 

  • Hayes CS, Aoki SK, Low DA (2010) Bacterial contact dependent delivery systems. Annu Rev Genet 44:71–90

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460-4. Epub 2007 Jun 12

  • Izore T, Job V, Dessen A (2011) Biogenesis, regulation, and targeting of the type III secretion system. Structure 19:603–612

    Article  CAS  PubMed  Google Scholar 

  • Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  • Kurahashi K, Kajikawa O, Sawa T, Ohara M, Gropper MA (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104:743–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lau SY, Taneja AK, Hodges RS (1984) Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J Biol Chem 259:13253–13261

    CAS  PubMed  Google Scholar 

  • Lawton DG, Longstaff C, Wallace BA, Hill J, Leary SEC, Titball RW, Brown KA (2002) Interactions of the type III secretion pathway proteins LcrV and LcrG from Yersinia pestis are mediated by coiled coil domains. J Biol Chem 277:38714–38722

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Stopford CM, Svenson AG, Rietsch A (2010) Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol 75:924–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Matson JS, Nilles ML (2001) LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis. J Bacteriol. 183:5082–5091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matson JS, Nilles ML (2002) Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface. BMC Microbiol 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Mattei PJ, Faudry E, Job V, Izore T, Attree I, Dessen A (2010) Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278:414–426

    Article  PubMed  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22(3):356–358

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Broz P, Cornelis GR (2008) The type III secretion system tip complex and translocon. Mol Microbiol 68:1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Broz P, Muller SA, Ringler P, ErneBrand F, Sorg I, Kuhn M, Engel A, Cornelis GR (2005) The V antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676

    Article  CAS  PubMed  Google Scholar 

  • Nanao M, Ricard-Blum S, Di Guilmi AM, Lemaire D, Lascoux D, Chabert J, Attree I, Dessen A (2003) Type III secretion proteins PcrV and PcrG from Pseudomonas aeruginosa form a 1:1 complex through high affinity interactions. BMC Microbiol 3:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Neyt C, Cornelis GR (1999) Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol 33:971–981

    Article  CAS  PubMed  Google Scholar 

  • Nilles ML (2004) Dissecting the structure of LcrV from Yersinia pestis, a truly unique virulence protein. Structure 12:357

    Article  CAS  PubMed  Google Scholar 

  • Nilles ML, Williams AW, Skrzypek E, Straley SC (1997) Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low Ca2+ response. J Bacteriol. 179:1307–1316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pallen MJ, Beatson SA, Bailey CM (2005) Bioinformatics, genomics and evolution of non flagellar type III secretion systems: a Darwinian perspective. FEMS Microbiol Rev 29:201–229

    Article  CAS  PubMed  Google Scholar 

  • Pallen MJ, Chaudhuri RR, Henderson IR (2003) Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527

    Article  CAS  PubMed  Google Scholar 

  • Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK Server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Portnoy DA, Martinez RJ (1985) Role of a plasmid in the pathogenicity of Yersinia species. Curr Top Microbiol Immunol 118:29–51

    CAS  PubMed  Google Scholar 

  • Rimpilainen M, Forsberg A, Wolf-Watz H (1992) A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis, shows extensive homology to YopH. J Bacteriol 174:3355–3363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protocol 5:725–738

    Article  CAS  Google Scholar 

  • Roy Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Frank DW (2011) Multi-functional characteristics of the Pseudomonas aeruginosa type III needle tip protein, PcrV; comparison to orthologs in other Gram-negative bacteria. Front Microbiol 2:142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato H, Hunt ML, Weiner JJ, Hansen AT, Frank DW (2011) Modified needle tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa. PLoS One 6:e18356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen A, Lupardus PJ, Morell M, Ponder EL, Sadaghiani AM, Garcia KC, Bogyo M (2009)Simplified, enhanced protein purification using an inducible autoprocessing enzyme tag. PLoS One 4:e8119

    Article  PubMed Central  PubMed  Google Scholar 

  • The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC [http://www.pymol.org].

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:668–673

    Article  Google Scholar 

  • Willighagel E, Howard M (2007) Fast and Scriptable Molecular Graphics in Web Browsers without Java3D Nature Precedings

  • Wolf E, Kim PS, Berger B (1997) MultiCoil: A Program for Predicting Two- and Three-Stranded Coiled Coils. Protein Science 6:1179–1189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woolley GA, Wallace BA (1993) Temperature dependence of the interaction of alamethicin helices in membranes. Biochemistry 32:9819–9825

    Article  CAS  PubMed  Google Scholar 

  • Worrall LJ, Lamiegnere E, Strynadka NCJ (2011) Structural overview of the bacterial injectisome. Curr Opin microbial 14:3–8

    Article  CAS  Google Scholar 

  • Young GM (2007) The Ysa type 3 secretion system of Yersinia enterocolitica biovar 1B. Adv Exp Med Biol 603:286–297

    Article  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou NE, Zhu B, Kay CM, Hodges RS (1992) The two-stranded alpha-helical coiled-coil is an ideal model for studying protein stability and subunit interactions. Biopolymers 32:419–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The funding and fellowship for this research were provided by the Council of Scientific and Industrial Research (CSIR), CSIR-Network Project (UNSEEN) and Department of Science and Technology (DST), Government of India. The research work was carried out at CSIR – Indian Institute of Chemical Biology (IICB), Kolkata. We thank Dr. Supratim Dey and Dr. Urmisha Das for their kind assistance in protein designing. We acknowledge Dr. Samir Kumar Roy (Senior technical officer, IICB-Kolkata) for the SPR experiments and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Datta.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

A. Basu and A. Das contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2015_1081_MOESM1_ESM.tif

Online resource 1 Sequence similarity of V-antigen and its regulator belonging to Ysc family. (a) MSA of LcrV, LssV, AcrV and PcrV was done in clustal W2 and represented in Jalview (b) MSA of PcrG, LssG, LcrG, and AcrG was done in ClustalW2 and represented in Jalview (TIFF 46645 kb)

Online resource 2 Intramolecular coiled-coil region in LcrG predicted by Multicoil server (TIFF 1479 kb)

Online resource 3 Intramolecular coiled-coil region in LcrG predicted by Paracoil server (TIFF 1507 kb)

Online resource 4 Intrinsically Disordered Region in LcrG predicted by PrDOS (TIFF 5103 kb)

Online resource 5 Intrinsically Disordered Region in LcrG predicted by DisEMBL (TIFF 6132 kb)

249_2015_1081_MOESM6_ESM.tif

Online resource 6 Dynamic light scattering spectrum of a) LcrV-LcrG, b)PcrV-PcrG, c) LcrV-PcrG, and d)PcrV-LcrG, in presence and absence of calcium and magnesium ions (TIFF 251 kb)

249_2015_1081_MOESM7_ESM.tif

Online resource 7 SPR-based equilibrium-binding analysis plot of a) PcrG and LcrV interaction, b) LcrG and PcrV interaction (TIFF 308 kb)

249_2015_1081_MOESM8_ESM.tif

Online resource 8 SPR-based equilibrium-binding analysis plot of a) LcrG and LcrV interaction, b) PcrG and PcrV interaction, c) PcrG and LcrV interaction, d) LcrG and PcrV interaction, in presence of 20 mM calcium (TIFF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Das, A., Mondal, A. et al. Structural analysis of inter-genus complexes of V-antigen and its regulator and their stabilization by divalent metal ions. Eur Biophys J 45, 113–128 (2016). https://doi.org/10.1007/s00249-015-1081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1081-2

Keywords

Navigation