Skip to main content
Log in

Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical α/β hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya P, Rao NM (2003) Stability studies on a lipase from Bacillus subtilis in guanidinium chloride. J Protein chem 22(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases. In vitro evolution and structural insight. J Mol Biol 381(2):324–340

    Article  CAS  PubMed  Google Scholar 

  • Anunciado D, Agumeh M, Kormos BL, Beveridge DL, Knee JL, Baranger AM (2008) Characterization of the dynamics of an essential helix in the U1A protein by time-resolved fluorescence measurements. J Phys Chem B 112(19):6122–6130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Augustyniak W, Brzezinska AA, Pijning T, Wienk H, Boelens R, Dijkstra BW, Reetz MT (2012) Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention. Protein Sci 21(4):487–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14(24):5355–5373

    Article  CAS  PubMed  Google Scholar 

  • Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54(1):43–71

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Bessler C, Srinivas R, Hari Krishna S (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20(10):433–437

    Article  CAS  PubMed  Google Scholar 

  • Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, Patkar S (2000) Structural origins of the interfacial activation in thermomyces (Humicola) lanuginosa lipase. Biochemistry 39(49):15071–15082

    Article  CAS  PubMed  Google Scholar 

  • Chahinian H, Snabe T, Attias C, Fojan P, Petersen SB, Carrière F (2006) How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry 45(3):993–1001

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Ittah V, Bai P, Luo L, Haas E, Peng Z-Y (2001) Structure and dynamics of the α-lactalbumin molten globule: fluorescence studies using proteins containing a single tryptophan residue †. Biochemistry 40(24):7228–7238

    Article  CAS  PubMed  Google Scholar 

  • Dusa A, Kaylor J, Edridge S, Bodner N, Hong D-P, Fink AL (2006) Characterization of oligomers during alpha-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry 45(8):2752–2760

    Article  CAS  PubMed  Google Scholar 

  • Eggert T, Leggewie C, Puls M, Streit W, van Pouderoyen G, Dijkstra BW, Jaeger K-E (2004) Novel biocatalysts by identification and design. Biocatal Biotransformat 22(2):141–146

    Article  Google Scholar 

  • Greene RF, Pace CN (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin. J Biol Chem 249(17):5388–5393

    CAS  PubMed  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964–972. doi:10.1038/nature06522

    Article  CAS  PubMed  Google Scholar 

  • Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  CAS  PubMed  Google Scholar 

  • Kamal MZ, Ahmad S, Molugu TR, Vijayalakshmi A, Deshmukh MV, Sankaranarayanan R, Rao NM (2011) In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation. J Mol Biol 413(3):726–741

    Article  CAS  PubMed  Google Scholar 

  • Kamal MZ, Mohammad TAS, Krishnamoorthy G, Rao NM (2012) Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant. PLoS One 7(4):e35188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawasaki K, Kondo H, Suzuki M, Ohgiyai S, Tsuda S (2002) Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 a resolution. Acta Crystallogr D Biol Crystallogr 58(7):1168–1174

    Article  PubMed  Google Scholar 

  • Kinosita K, Kawato S, Ikegami A (1977) A theory of fluorescence polarization decay in membranes. Biophys J 20(3):289–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, LLC, Boston

    Book  Google Scholar 

  • Lesuisse E, Schanck K, Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216(1):155–160

    Article  CAS  PubMed  Google Scholar 

  • Manafi M, Kneifel W, Bascomb S (1991) Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol Rev 55(3):335–348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newman J (2004) Novel buffer systems for macromolecular crystallization. Acta crystallogr Sect D Biol Crystallogr 60(Pt 3):610–612

    Article  Google Scholar 

  • Pace CN, Grimsley GR, Scholtz JM (2008) Denaturation of proteins by urea and guanidine hydrochloride. In: Fersht AR (ed) Protein science encyclopedia. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Pencreac’h G, Graille J, Pina M, Verger R (2002) An ultraviolet spectrophotometric assay for measuring lipase activity using long-chain triacyglycerols from aleurites fordii seeds. Anal Biochem 303(1):17–24

    Article  PubMed  Google Scholar 

  • Petersen MTN, Fojan P, Petersen SB (2001) How do lipases and esterases work: the electrostatic contribution. J Biotechnol 85(2):115–147

    Article  PubMed  Google Scholar 

  • Pettit FK, Bare E, Tsai A, Bowie JU (2007) HotPatch: a statistical approach to finding biologically relevant features on protein surfaces. J Mol Biol 369(3):863–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajakumara E, Acharya P, Ahmad S, Sankaranaryanan R, Rao NM (2008) Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH. Biochim et Biophys Acta Proteins Proteomics 1784(2):302–311

    Article  CAS  Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Rosen CG, Weber G (1969) Dimer formation from 1-anilino-8-naphthalenesulfonate catalyzed by bovine serum albumin. Fluorescent molecule with exceptional binding properties. Biochemistry 8(10):3915–3920

    Article  CAS  PubMed  Google Scholar 

  • Santoro MM, Bolen DW (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl.alpha.-chymotrypsin using different denaturants. Biochemistry 27(21):8063–8068

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    Article  CAS  PubMed  Google Scholar 

  • Schröder GF, Alexiev U, Grubmüller H (2005) Simulation of fluorescence anisotropy experiments: probing protein dynamics. Biophys J 89(6):3757–3770

    Article  PubMed Central  PubMed  Google Scholar 

  • Szabo A (1984) Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81(1):150

    Article  CAS  Google Scholar 

  • van Pouderoyen G, Eggert T, Jaeger K-E, Dijkstra BW (2001) The crystal structure of Bacillus subtili lipase: a minimal α/β hydrolase fold enzyme. J Mol Biol 309(1):215–226

    Article  PubMed  Google Scholar 

  • Yu Y, Wu D, Liu C, Zhao Z, Yang Y, Li Q (2012) Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: a review. Process Biochem 47(7):1027–1036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Ulrich Kraus, Forschungszentrum Jülich, for kindly providing the DNA of BSLA and the purification procedure, and Professor Nickisch-Hartfiel for making it possible to conduct parts of this research in the Biotechnology Laboratories of the Chemistry Department.

Funding sources

The work was supported by the “Professorinnenprogramm des Bundes und der Länder”, 01FP09231B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Hoffmann-Jacobsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kübler, D., Ingenbosch, K.N., Bergmann, A. et al. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions. Eur Biophys J 44, 655–665 (2015). https://doi.org/10.1007/s00249-015-1061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1061-6

Keywords

Navigation