Skip to main content
Log in

Free energy simulations of amylin I26P mutation in a lipid bilayer

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The amylin peptide in a dioleoylphosphatidylcholine (DOPC) bilayer is studied using united atom molecular dynamics (MD) simulations. Dynamics and transport properties of the peptide and the phospholipid bilayer are investigated. The lateral diffusion of DOPC is in the order of 10−8 cm2 s−1, which is in agreement with the experimental results. The order parameter and density profile for phospholipid molecules in the bilayer are calculated. The secondary structure of amylin peptide shows that the amino acids in two terminals are structureless and two α-helical segments in the peptide are connected through an unstructured link. This structure is similar to the experimental structure in the membrane-mimicking media. Free energy calculations of the Ile26 → Pro mutation in the amylin peptide are performed in the bilayer and in aqueous solution using molecular dynamics simulations and a thermodynamic cycle. It is shown that in the mutated peptide in aqueous solution, the α-helix structure changes to a 5-helix, whereas this configuration is preserved in the bilayer environment. It is interesting that the accessible surface area increases for hydrophobic residues in the bilayer and for hydrophilic residues in aqueous solution as the coupling parameter changes from 0 to 1. These results are significant to understanding the aggregation mechanism of human amylin monomers in membranes to the dimers, trimers, oligomers, and fibrils associated with the type 2 diabetes at the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abedini A, Meng F, Raleigh DP (2007) A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J Am Chem Soc 129:11300–11301

    Article  CAS  PubMed  Google Scholar 

  • Allen WJ, Lemkul JA, Bevan DR (2009) Gridmatmd: a grid-based membrane analysis tool for use with molecular dynamics. J Comput Chem 30:1952–1958

    Article  CAS  PubMed  Google Scholar 

  • Baumketner A, Shea J (2007) The structure of the Alzheimer amyloid ß 10–35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. J Mol Biol 366:275–285

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. D. Reidel Publishing Company, Dordrecht, pp 331–342

    Chapter  Google Scholar 

  • Berger O, Edholm O, Jhnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betsholtz C, Christmansson L, Engstrom U, Rorsman F, Svensson V, Johnson KH, Westermark P (1989) Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett 251:261–264

    Article  CAS  PubMed  Google Scholar 

  • Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: applications to chemical and biomolecular systems. Ann Rev Biophys Biophys Chem 18:431–492

    Article  CAS  Google Scholar 

  • Bhide SY, Berkowitz ML (2005) Structure and dynamics of water at the interface with phospholipid bilayers. J Chem Phys 123:224702

    Article  PubMed  Google Scholar 

  • Chiu SW, Jakobsson E, Subramaniam S, Scott HL (1999) Combined monte carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys J 77:2462–2469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N.log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Doss CGP, NagaSundaram N (2012) Investigating the Structural Impacts of I64T and P311S Mutations in APE1-DNA complex: a molecular dynamics approach. PLoS One 7:e31677

    Article  PubMed Central  PubMed  Google Scholar 

  • Douliez J-P, Leonard A, Dufourc EJ (1995) Restatement of order parameters in biomembranes: calculation of C–C bond order parameters from C–D quadrupolar splitting. Biophys J 68:1727–1739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duan M, Fan J, Huo S (2012) Conformations of islet amyloid polypeptide monomers in a membrane environment: implications for fibril formation. PLoS One 7:e47150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupuis NF, Wu C, Shea JE, Bowers MT (2011a) The amyloid formation mechanism in human IAPP: dimers have beta-strand monomer-monomer interfaces. J Am Chem Soc 133:7240–7243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupuis NF, Wu C, Shea J, Bowers MT (2011b) J Am Chem Soc 133:7240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engel MFM, Yigittop H, Elgersma RC, Rijkers DTS, Liskamp RMJ, de Kruijff D, HÖppener JWM, Killian JA (2006) Islet amyloid polypeptide inserts into phospholipid monolayers as monomer. J Mol Biol 356:783–789

    Article  CAS  PubMed  Google Scholar 

  • Fowler PW, Jha S, Coveney PV, Wan S (2004) Exact calculation of peptide-protein binding energies by steered thermodynamic integration using high performance computing grids. In: proceedings of the UK e-Science All Hands Meeting

  • Gao J, Kuczera K, Karplus M (1989) Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244:1069–1072

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez CL, Montoya-Fuentes H, Padilla-Rosas M, Sanchez-Corona G (2007) Amylin S20G mutation in Mexican population. Diabetes Res Clin Pract 76:146–148

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Feraaije JGEM (1997) LINCS: a linear Constrain solvent for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Jacobson K (1983) Lateral diffusion in membranes. Cell Motil 3:367–373

    Article  CAS  PubMed  Google Scholar 

  • Jaikaran ETAS, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537:179–203

    Article  CAS  PubMed  Google Scholar 

  • Jaikaran E, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser PE (2001) Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. J Mol Biol 308:515–525

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Zheng J, Nussinov R (2007) Models of β-Amyloid ion channels in the membrane suggest That channel formation in the bilayer is a dynamic process hyunbum. Biophys J 93:1938–1949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia Y, Qian Z, Zhang Y, Wei G (2013) Adsorption and orientation of human islet amyloid polypeptide (hIAPP) monomer at anionic lipid bilayers: implications for membrane-mediated aggregation. Int J Mol Sci 14:6241–6258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang P, Xu W, Mu Y (2009) Amyloidogenesis abolished by proline substitutions but enhanced by lipid binding. PLoS Comput Biol 5:e1000357

    Article  PubMed Central  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  CAS  PubMed  Google Scholar 

  • Karlsson E (1999) IAPP as a regulator of glucose homeostasis and pancreatic hormone secretion (review). Int J Mol Med 3:577–584

    CAS  PubMed  Google Scholar 

  • Khemtemourian L, Killian JA, Hoppener JW, Engel MFM (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type 2 diabetes mellitus. Experimental Diabetes Research 2008:421287

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  • Kollman PA (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  • Laghaei R, Mousseau N, Wei GH (2011) Structure and thermodynamics of amylin dimer studied by hamiltonian-temperature replica exchange molecular dynamics simulations. J Phys Chem B 115:3146–3154

    Article  CAS  PubMed  Google Scholar 

  • Lalchev ZI, Wilde PJ, Clark DC (1994) Surface diffusion in phospholipids foam films. Colloids Surf 167:80

    Article  CAS  Google Scholar 

  • Leach AR (2001) Molecular modeling. Principles and applications, 2nd edn. Pearson Education Limited, UK

  • Liu D, Nocedal J (1989) On the limited memory method for large scale optimization. Math Program Ser B 45:503–528

    Article  Google Scholar 

  • Lopes DHJ, Meister A, Gohlke A, Hauser A, Blume A, Winter R (2007) Mechanism of islet amyloid polypeptide fibrillation at lipid interfaces studied by infrared reflection absorption spectroscopy. Biophys J 93:3132–3141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mo Y, Lu Y, Wei G, Derreumaux P (2009) Structural diversity of the soluble trimers of the human amylin (20–29) peptide revealed by molecular dynamics simulations. J Chem Phys 130:125101–125106

    Article  PubMed  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, Gunsteren WFV (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  • Patil SM, Xu S, Sheftic SR, Alexandrescu AT (2009) Dynamic α-Helix structure of micelle-bound human amylin. J Biol Chem 284:11982–11991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86:1574–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakagashira S, Hiddinga HJ, Tateishi K, Sanke T, Hanabusa T, Nanjo K, Eberhardt NL (2000) S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wildtype amylin. Am J Pathol 157:2101–2109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sciacca MFM, Pappalardo M, Attanasio F, Milardi D, La Rosa CM, Grasso D (2010) Are fibril growth and membrane damage linked processes? An experimental and computational study of IAPP (12–18) and IAPP (21–27) peptides. New J Chem 34:200–207

    Article  CAS  Google Scholar 

  • Shrake A, Rupley JA (1997) Environment and exposure to solvent of protein atoms lysozyme and insulin. J Mol Biol 79:351–371

    Article  Google Scholar 

  • Simonson T, Archontis G, Karplus M (2002) Free-energy simulations come of age: protein-ligand recognition. Acc Chem Res 35:430–437

    Article  CAS  PubMed  Google Scholar 

  • Sun Y-C, Veenstra DL, Kollman PA (1996) Free energy calculations of the mutation of De96 → Ala in barnase: contributions to the difference in stability. Protein Eng 9:273–281

    Article  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75:917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • van Gunsteren WF, Weiner P, Editors (1989) Computer simulation of biomolecular systems: Theoretical and experimental applications, ESCOM 1 Leiden, The Netherlands

  • Vermeer LS, de Groot BL, Reat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36:919–931

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Schonhoff M, Mohwald H (2002) Lipids coupled to polyelectrolyte multilayers: ultraslow diffusion and the dynamics of electrostatic interactions. J Phys Chem B 106:9135–9142

    Article  CAS  Google Scholar 

  • Wang M, Yang J, Wang J, Wang X (2012) Structural Effects of L16Q, S20G, and L16Q-S20G Mutations on hIAPP: a comparative molecular dynamics study. Chin J Chem 30:241–248

    Article  Google Scholar 

  • Westermark P (1973) Fine structure of islets of Langerhans in insular amyloidosis. Virchows Archiv A 359:1–18

    Article  CAS  Google Scholar 

  • Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84:3881–3885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson JA, Loria JP, Miranker AD (2009) Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 393:383–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wohlert J, Edholm O (2006) Dynamics in atomistic simulations of phospholipid membranes: nuclear magnetic resonance relaxation rates and lateral diffusion. J Chem Phys 125:204703

    Article  PubMed  Google Scholar 

  • Xu W, Ping J, Li W, Mu Y (2009) Assembly dynamics of two-beta sheets revealed by molecular dynamics simulations. J Chem Phys 130:164709. http://www.bioinf.uni-sb.de/RB/dopc/berger/berger-NPT-100ns.pdb

  • Zhang Y, Luo Y, Deng Y, Mu Y, Wei G (2012) Lipid interaction and membrane perturbation of human islet amyloid polypeptide monomer and dimer by molecular dynamics simulations. PLoS One 7(5):e38191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Theoretical and Computational Physical Chemistry Laboratory at K.N. Toosi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Maleki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2014_999_MOESM1_ESM.doc

The calculated MSDs for the DOPC bilayer in the range of 40 ns are presented in figure S1. Final conformations of amylin for simulations at six different λ values in the solvent and bilayer environment are given in figure S2. dG/dλ versus time and their cumulative average for lambda = 0.7, 0.75, 0.9, and 0.95 for peptide in aqueous solution are shown in figure S3. The number of hydrogen bonds formed between native hIAPP and the lipid bilayer in λ = 0 and between mutated hIAPP and the lipid bilayer in λ = 1 are presented in figure S4. (DOC 2861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, S., Maleki, A., Akhavan, M. et al. Free energy simulations of amylin I26P mutation in a lipid bilayer. Eur Biophys J 44, 37–47 (2015). https://doi.org/10.1007/s00249-014-0999-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0999-0

Keywords

Navigation