European Biophysics Journal

, Volume 44, Issue 1–2, pp 1–7 | Cite as

Characterizing the interaction between DNA and GelRed fluorescent stain

  • F. A. P. Crisafuli
  • E. B. Ramos
  • M. S. RochaEmail author
Original Paper


We have performed single-molecule stretching and dynamic light-scattering (DLS) experiments to characterize the interaction between the DNA molecule and the fluorescent stain GelRed. The results from single-molecule stretching show that the persistence length of DNA–GelRed complexes increases as the ligand concentration increases up to a critical concentration, then decreases for higher concentrations. The contour length of the complexes, on the other hand, increases monotonically as a function of GelRed concentration, suggesting that intercalation is the main binding mechanism. To characterize the physical chemistry of the interaction, we used the McGhee–von Hippel binding isotherm to extract physicochemical data for the interaction from the contour length data. Such analysis enabled us to conclude that the GelRed stain is, in fact, a bis-intercalator. In addition, DLS experiments were performed to study the changes of the effective size of the DNA–GelRed complexes, measured as the hydrodynamic radius, as a function of ligand concentration. We observed qualitative agreement between the results obtained from the two techniques by comparing the behavior of the hydrodynamics radius and the radius of gyration, because the latter quantity can be expressed as a function of mechanical properties determined from the stretching experiments.


Intercalation Single-molecule stretching Dynamic light scattering Binding isotherm 



This work was supported by the Brazilian agencies: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The DLS experiments were performed in the “Laboratório de Microfluídica e Fluidos Complexos (LMFFC)” of Universidade Federal de Viçosa.

Supplementary material

249_2014_995_MOESM1_ESM.pdf (934 kb)
Supplementary material 1 (pdf 934 KB)


  1. Amitani I, Liu B, Dombrowski CC, Baskin RJ, Kowalczykowski SC (2010) Watching individual proteins acting on single molecules of dna. Methods Enzymol 472:261–291PubMedCentralPubMedCrossRefGoogle Scholar
  2. Berge T, Jenkins NS, Hopkirk RB, Waring MJ, Edwardson JM, Henderson RM (2002) Structural perturbations in dna caused by bis-intercalation of ditercalinium visualised by atomic force microscopy. Nucl Acids Res 30(13):2980–2986PubMedCentralPubMedCrossRefGoogle Scholar
  3. Biotium (2013) Safety report of gelred and gelgreen. Nucleic acid detection technologies. Accessed Oct 2014
  4. Cassina V, Seruggia D, Beretta GL, Salerno D, Brogioli D, Manzini S, Zunino F, Mantegazza F (2010) Atomic force microscopy study of dna conformation in the presence of drugs. Eur Biophys J 40(1):59–68PubMedCrossRefGoogle Scholar
  5. Cesconetto EC, Junior FSA, Crisafuli FAP, Mesquita ON, Ramos EB, Rocha MS (2013) DNA interaction with actinomycin d: mechanical measurements reveal the details of the binding data. Phys Chem Chem Phys 15(26):11070–11077Google Scholar
  6. Chaires JB, Dattagupta N, Crothers DM (1982) Studies on interaction of anthracycline antibiotics and deoxyribonucleic-acid—equilibrium binding-studies on interaction of daunomycin with deoxyribonucleic-acid. Biochemistry 21(17):3933–3940PubMedCrossRefGoogle Scholar
  7. Crisafuli FAP, Cesconetto EC, Ramos EB, Rocha MS (2012) Dna-cisplatin interaction studied with single-molecule stretching experiments. Integr Biol 4:568–574CrossRefGoogle Scholar
  8. Daune M (1999) Molecular biophysics, 1st edn. Oxford University Press, OxfordGoogle Scholar
  9. Fritzsche H, Triebel H, Chaires JB, Dattagupta N, Crothers DM (1982) Interaction of anthracycline antibiotics with bio-polymers. 6. studies on interaction of anthracycline antibiotics and deoxyribonucleic-acid—geometry of intercalation of iremycin and daunomycin. Biochemistry 21(17):3940–3946PubMedCrossRefGoogle Scholar
  10. Fu H, Chen H, Koh CG, Lim CT (2009) Effects of magnesium salt concentrations on b-dna overstretching transition. Eur Phys J E 29:45–49PubMedCrossRefGoogle Scholar
  11. Garbay-Jaureguiberry C, Laugâa P, Delepierre M, Laalami S, Muzard G, Pecq JBL, Roques BP (1987) Dna bis-intercalators as new anti-tumour agents: Modulation of the anti-tumour activity by the linking chain rigidity in the ditercalinium series. Anticancer Drug Des 1(4):323–335PubMedGoogle Scholar
  12. Gaugain B, Barbet J, Capelle N, Roques BP, Pecq JL (1978) Dna bifunctional intercalators.2. fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer. Biochemistry 17(24):5078–5088PubMedCrossRefGoogle Scholar
  13. Günther K, Mertig M, Seidel R (2010) Mechanical and structural properties of yoyo-1 complexed DNA. Nucl Acids Res 38(19):6526–6532PubMedCentralPubMedCrossRefGoogle Scholar
  14. Huang Q, Baum L, Fu WL (2010) Simple and practical staining of dna with gelred in agarose gel electrophoresis. Clin Lab 56:149–152PubMedGoogle Scholar
  15. Hur JS, Shaqfeh ESG (2001) Dynamics of dilute and semidilute dna solutions in the start-up of shear flow. J Rheol 45(2):421–450CrossRefGoogle Scholar
  16. Kaji N, Ueda M, Baba Y (2001) Direct measurement of conformational changes on dna molecule intercalating with a fluorescence dye in an electrophoretic buffer solution by means of atomic force microscopy. Electrophoresis 22(16):3357–3364PubMedCrossRefGoogle Scholar
  17. Lipfert J, Klijnhout S, Dekker NH (2010) Torsional sensing of small-molecule binding using magnetic tweezers. Nucl Acids Res 38(20):7122–7132PubMedCentralPubMedCrossRefGoogle Scholar
  18. Maaloum M, Mullera P, Harlepp S (2013) DNA–intercalator interactions: structural and physical analysis using atomic force microscopy in solution. Soft Matter 9:11233Google Scholar
  19. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28(26):8759–8770CrossRefGoogle Scholar
  20. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions—cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489PubMedCrossRefGoogle Scholar
  21. Murade CU, Subramaniam V, Otto C, Bennink ML (2009) Interaction of oxazole yellow dyes with dna studied with hybrid optical tweezers and fluorescence microscopy. Biophys J 97:835–843PubMedCentralPubMedCrossRefGoogle Scholar
  22. Quake SR, Babcock H, Chu S (1997) The dynamics of partially extended single molecules of dna. Nature 388(10):151–154PubMedGoogle Scholar
  23. Reis LA, Ramos EB, Rocha MS (2013) DNA interaction with diaminobenzidine studied with optical tweezers and dynamic light scattering. J Phys Chem B 117(46):14345–14350Google Scholar
  24. Rocha MS (2009) Modeling the entropic structural transition of dna complexes formed with intercalating drugs. Phys Biol 6:036013Google Scholar
  25. Rocha MS (2010) Revisiting the neighbor exclusion model and its applications. Biopolymers 93:1–7PubMedCrossRefGoogle Scholar
  26. Rocha MS, Ferreira MC, Mesquita ON (2007) Transition on the entropic elasticity of DNA induced by intercalating molecules. J Chem Phys 127(10), Art.  105108 Google Scholar
  27. Rocha MS, Lúcio AD, Alexandre SS, Nunes RW, Mesquita ON (2009) DNA-psoralen: single-molecule experiments and first principles calculations. Appl Phys Lett 95:253703Google Scholar
  28. Silva EF, Ramos EB, Rocha MS (2013) Dna interaction with hoechst 33258: stretching experiments decouple the different binding modes. J Phys Chem B 117(24):7292–7296PubMedCrossRefGoogle Scholar
  29. Siman L, Carrasco ISS, da Silva JKL, Oliveira MC, Rocha MS, Mesquita ON (2012) Quantitative assessment of the interplay between dna-elasticity and cooperative binding of ligands. Phys Rev Lett 109(24):248103Google Scholar
  30. Sischka A, Toensing K, Eckel R, Wilking SD, Sewald N, Rios R, Anselmetti D (2005) Molecular mechanisms and kinetics between dna and dna binding ligands. Biophys J 88(1):404–411PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tessmer I, Baumann CG, Skinner GM, Molloy JE, Hoggett JG, Tendler SJB, Allen S (2003) Mode of drug binding to dna determined by optical tweezers force spectroscopy. J Mod Opt 50(10):1627–1636CrossRefGoogle Scholar
  32. Wikipedia (2014) Gelred. Accessed Oct 2014
  33. Yoshikawa K, Matsuzawa Y, Minagawa K, Doi M, Matsumoto M (1992) Opposite effect between intercalator and minor groove binding drug on the higher order structure of dna as is visualized by fluorescence microscopy. Biochem Biphys Res Commun 188(3):1274–1279CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • F. A. P. Crisafuli
    • 1
  • E. B. Ramos
    • 1
  • M. S. Rocha
    • 1
    Email author
  1. 1.Laboratório de Física Biológica - Departamento de FísicaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations